978 lines
22 KiB
JavaScript
978 lines
22 KiB
JavaScript
/**
|
|
* Default minimum size of a run.
|
|
*/
|
|
const DEFAULT_MIN_MERGE = 32;
|
|
|
|
/**
|
|
* Minimum ordered subsequece required to do galloping.
|
|
*/
|
|
const DEFAULT_MIN_GALLOPING = 7;
|
|
|
|
/**
|
|
* Default tmp storage length. Can increase depending on the size of the
|
|
* smallest run to merge.
|
|
*/
|
|
const DEFAULT_TMP_STORAGE_LENGTH = 256;
|
|
|
|
/**
|
|
* Pre-computed powers of 10 for efficient lexicographic comparison of
|
|
* small integers.
|
|
*/
|
|
const POWERS_OF_TEN = [1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9]
|
|
|
|
/**
|
|
* Estimate the logarithm base 10 of a small integer.
|
|
*
|
|
* @param {number} x - The integer to estimate the logarithm of.
|
|
* @return {number} - The estimated logarithm of the integer.
|
|
*/
|
|
function log10(x) {
|
|
if (x < 1e5) {
|
|
if (x < 1e2) {
|
|
return x < 1e1 ? 0 : 1;
|
|
}
|
|
|
|
if (x < 1e4) {
|
|
return x < 1e3 ? 2 : 3;
|
|
}
|
|
|
|
return 4;
|
|
}
|
|
|
|
if (x < 1e7) {
|
|
return x < 1e6 ? 5 : 6;
|
|
}
|
|
|
|
if (x < 1e9) {
|
|
return x < 1e8 ? 7 : 8;
|
|
}
|
|
|
|
return 9;
|
|
}
|
|
|
|
/**
|
|
* Default alphabetical comparison of items.
|
|
*
|
|
* @param {string|object|number} a - First element to compare.
|
|
* @param {string|object|number} b - Second element to compare.
|
|
* @return {number} - A positive number if a.toString() > b.toString(), a
|
|
* negative number if .toString() < b.toString(), 0 otherwise.
|
|
*/
|
|
function alphabeticalCompare(a, b) {
|
|
if (a === b) {
|
|
return 0;
|
|
}
|
|
|
|
if (~~a === a && ~~b === b) {
|
|
if (a === 0 || b === 0) {
|
|
return a < b ? -1 : 1;
|
|
}
|
|
|
|
if (a < 0 || b < 0) {
|
|
if (b >= 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (a >= 0) {
|
|
return 1;
|
|
}
|
|
|
|
a = -a;
|
|
b = -b;
|
|
}
|
|
|
|
const al = log10(a);
|
|
const bl = log10(b);
|
|
|
|
let t = 0;
|
|
|
|
if (al < bl) {
|
|
a *= POWERS_OF_TEN[bl - al - 1];
|
|
b /= 10;
|
|
t = -1;
|
|
} else if (al > bl) {
|
|
b *= POWERS_OF_TEN[al - bl - 1];
|
|
a /= 10;
|
|
t = 1;
|
|
}
|
|
|
|
if (a === b) {
|
|
return t;
|
|
}
|
|
|
|
return a < b ? -1 : 1;
|
|
}
|
|
|
|
let aStr = String(a);
|
|
let bStr = String(b);
|
|
|
|
if (aStr === bStr) {
|
|
return 0;
|
|
}
|
|
|
|
return aStr < bStr ? -1 : 1;
|
|
}
|
|
|
|
/**
|
|
* Compute minimum run length for TimSort
|
|
*
|
|
* @param {number} n - The size of the array to sort.
|
|
*/
|
|
function minRunLength(n) {
|
|
let r = 0;
|
|
|
|
while (n >= DEFAULT_MIN_MERGE) {
|
|
r |= (n & 1);
|
|
n >>= 1;
|
|
}
|
|
|
|
return n + r;
|
|
}
|
|
|
|
/**
|
|
* Counts the length of a monotonically ascending or strictly monotonically
|
|
* descending sequence (run) starting at array[lo] in the range [lo, hi). If
|
|
* the run is descending it is made ascending.
|
|
*
|
|
* @param {array} array - The array to reverse.
|
|
* @param {number} lo - First element in the range (inclusive).
|
|
* @param {number} hi - Last element in the range.
|
|
* @param {function} compare - Item comparison function.
|
|
* @return {number} - The length of the run.
|
|
*/
|
|
function makeAscendingRun(array, lo, hi, compare) {
|
|
let runHi = lo + 1;
|
|
|
|
if (runHi === hi) {
|
|
return 1;
|
|
}
|
|
|
|
// Descending
|
|
if (compare(array[runHi++], array[lo]) < 0) {
|
|
while (runHi < hi && compare(array[runHi], array[runHi - 1]) < 0) {
|
|
runHi++;
|
|
}
|
|
|
|
reverseRun(array, lo, runHi);
|
|
// Ascending
|
|
} else {
|
|
while (runHi < hi && compare(array[runHi], array[runHi - 1]) >= 0) {
|
|
runHi++;
|
|
}
|
|
}
|
|
|
|
return runHi - lo;
|
|
}
|
|
|
|
/**
|
|
* Reverse an array in the range [lo, hi).
|
|
*
|
|
* @param {array} array - The array to reverse.
|
|
* @param {number} lo - First element in the range (inclusive).
|
|
* @param {number} hi - Last element in the range.
|
|
*/
|
|
function reverseRun(array, lo, hi) {
|
|
hi--;
|
|
|
|
while (lo < hi) {
|
|
let t = array[lo];
|
|
array[lo++] = array[hi];
|
|
array[hi--] = t;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Perform the binary sort of the array in the range [lo, hi) where start is
|
|
* the first element possibly out of order.
|
|
*
|
|
* @param {array} array - The array to sort.
|
|
* @param {number} lo - First element in the range (inclusive).
|
|
* @param {number} hi - Last element in the range.
|
|
* @param {number} start - First element possibly out of order.
|
|
* @param {function} compare - Item comparison function.
|
|
*/
|
|
function binaryInsertionSort(array, lo, hi, start, compare) {
|
|
if (start === lo) {
|
|
start++;
|
|
}
|
|
|
|
for (; start < hi; start++) {
|
|
let pivot = array[start];
|
|
|
|
// Ranges of the array where pivot belongs
|
|
let left = lo;
|
|
let right = start;
|
|
|
|
/*
|
|
* pivot >= array[i] for i in [lo, left)
|
|
* pivot < array[i] for i in in [right, start)
|
|
*/
|
|
while (left < right) {
|
|
let mid = (left + right) >>> 1;
|
|
|
|
if (compare(pivot, array[mid]) < 0) {
|
|
right = mid;
|
|
} else {
|
|
left = mid + 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Move elements right to make room for the pivot. If there are elements
|
|
* equal to pivot, left points to the first slot after them: this is also
|
|
* a reason for which TimSort is stable
|
|
*/
|
|
let n = start - left;
|
|
// Switch is just an optimization for small arrays
|
|
switch (n) {
|
|
case 3:
|
|
array[left + 3] = array[left + 2];
|
|
/* falls through */
|
|
case 2:
|
|
array[left + 2] = array[left + 1];
|
|
/* falls through */
|
|
case 1:
|
|
array[left + 1] = array[left];
|
|
break;
|
|
default:
|
|
while (n > 0) {
|
|
array[left + n] = array[left + n - 1];
|
|
n--;
|
|
}
|
|
}
|
|
|
|
array[left] = pivot;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Find the position at which to insert a value in a sorted range. If the range
|
|
* contains elements equal to the value the leftmost element index is returned
|
|
* (for stability).
|
|
*
|
|
* @param {number} value - Value to insert.
|
|
* @param {array} array - The array in which to insert value.
|
|
* @param {number} start - First element in the range.
|
|
* @param {number} length - Length of the range.
|
|
* @param {number} hint - The index at which to begin the search.
|
|
* @param {function} compare - Item comparison function.
|
|
* @return {number} - The index where to insert value.
|
|
*/
|
|
function gallopLeft(value, array, start, length, hint, compare) {
|
|
let lastOffset = 0;
|
|
let maxOffset = 0;
|
|
let offset = 1;
|
|
|
|
if (compare(value, array[start + hint]) > 0) {
|
|
maxOffset = length - hint;
|
|
|
|
while (offset < maxOffset && compare(value, array[start + hint + offset]) > 0) {
|
|
lastOffset = offset;
|
|
offset = (offset << 1) + 1;
|
|
|
|
if (offset <= 0) {
|
|
offset = maxOffset;
|
|
}
|
|
}
|
|
|
|
if (offset > maxOffset) {
|
|
offset = maxOffset;
|
|
}
|
|
|
|
// Make offsets relative to start
|
|
lastOffset += hint;
|
|
offset += hint;
|
|
|
|
// value <= array[start + hint]
|
|
} else {
|
|
maxOffset = hint + 1;
|
|
while (offset < maxOffset && compare(value, array[start + hint - offset]) <= 0) {
|
|
lastOffset = offset;
|
|
offset = (offset << 1) + 1;
|
|
|
|
if (offset <= 0) {
|
|
offset = maxOffset;
|
|
}
|
|
}
|
|
if (offset > maxOffset) {
|
|
offset = maxOffset;
|
|
}
|
|
|
|
// Make offsets relative to start
|
|
let tmp = lastOffset;
|
|
lastOffset = hint - offset;
|
|
offset = hint - tmp;
|
|
}
|
|
|
|
/*
|
|
* Now array[start+lastOffset] < value <= array[start+offset], so value
|
|
* belongs somewhere in the range (start + lastOffset, start + offset]. Do a
|
|
* binary search, with invariant array[start + lastOffset - 1] < value <=
|
|
* array[start + offset].
|
|
*/
|
|
lastOffset++;
|
|
while (lastOffset < offset) {
|
|
let m = lastOffset + ((offset - lastOffset) >>> 1);
|
|
|
|
if (compare(value, array[start + m]) > 0) {
|
|
lastOffset = m + 1;
|
|
|
|
} else {
|
|
offset = m;
|
|
}
|
|
}
|
|
return offset;
|
|
}
|
|
|
|
/**
|
|
* Find the position at which to insert a value in a sorted range. If the range
|
|
* contains elements equal to the value the rightmost element index is returned
|
|
* (for stability).
|
|
*
|
|
* @param {number} value - Value to insert.
|
|
* @param {array} array - The array in which to insert value.
|
|
* @param {number} start - First element in the range.
|
|
* @param {number} length - Length of the range.
|
|
* @param {number} hint - The index at which to begin the search.
|
|
* @param {function} compare - Item comparison function.
|
|
* @return {number} - The index where to insert value.
|
|
*/
|
|
function gallopRight(value, array, start, length, hint, compare) {
|
|
let lastOffset = 0;
|
|
let maxOffset = 0;
|
|
let offset = 1;
|
|
|
|
if (compare(value, array[start + hint]) < 0) {
|
|
maxOffset = hint + 1;
|
|
|
|
while (offset < maxOffset && compare(value, array[start + hint - offset]) < 0) {
|
|
lastOffset = offset;
|
|
offset = (offset << 1) + 1;
|
|
|
|
if (offset <= 0) {
|
|
offset = maxOffset;
|
|
}
|
|
}
|
|
|
|
if (offset > maxOffset) {
|
|
offset = maxOffset;
|
|
}
|
|
|
|
// Make offsets relative to start
|
|
let tmp = lastOffset;
|
|
lastOffset = hint - offset;
|
|
offset = hint - tmp;
|
|
|
|
// value >= array[start + hint]
|
|
} else {
|
|
maxOffset = length - hint;
|
|
|
|
while (offset < maxOffset && compare(value, array[start + hint + offset]) >= 0) {
|
|
lastOffset = offset;
|
|
offset = (offset << 1) + 1;
|
|
|
|
if (offset <= 0) {
|
|
offset = maxOffset;
|
|
}
|
|
}
|
|
|
|
if (offset > maxOffset) {
|
|
offset = maxOffset;
|
|
}
|
|
|
|
// Make offsets relative to start
|
|
lastOffset += hint;
|
|
offset += hint;
|
|
}
|
|
|
|
/*
|
|
* Now array[start+lastOffset] < value <= array[start+offset], so value
|
|
* belongs somewhere in the range (start + lastOffset, start + offset]. Do a
|
|
* binary search, with invariant array[start + lastOffset - 1] < value <=
|
|
* array[start + offset].
|
|
*/
|
|
lastOffset++;
|
|
|
|
while (lastOffset < offset) {
|
|
let m = lastOffset + ((offset - lastOffset) >>> 1);
|
|
|
|
if (compare(value, array[start + m]) < 0) {
|
|
offset = m;
|
|
|
|
} else {
|
|
lastOffset = m + 1;
|
|
}
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
class TimSort {
|
|
array = null;
|
|
compare = null;
|
|
minGallop = DEFAULT_MIN_GALLOPING;
|
|
length = 0;
|
|
tmpStorageLength = DEFAULT_TMP_STORAGE_LENGTH;
|
|
stackLength = 0;
|
|
runStart = null;
|
|
runLength = null;
|
|
stackSize = 0;
|
|
|
|
constructor(array, compare) {
|
|
this.array = array;
|
|
this.compare = compare;
|
|
|
|
this.length = array.length;
|
|
|
|
if (this.length < 2 * DEFAULT_TMP_STORAGE_LENGTH) {
|
|
this.tmpStorageLength = this.length >>> 1;
|
|
}
|
|
|
|
this.tmp = new Array(this.tmpStorageLength);
|
|
|
|
this.stackLength =
|
|
(this.length < 120 ? 5 :
|
|
this.length < 1542 ? 10 :
|
|
this.length < 119151 ? 19 : 40);
|
|
|
|
this.runStart = new Array(this.stackLength);
|
|
this.runLength = new Array(this.stackLength);
|
|
}
|
|
|
|
/**
|
|
* Push a new run on TimSort's stack.
|
|
*
|
|
* @param {number} runStart - Start index of the run in the original array.
|
|
* @param {number} runLength - Length of the run;
|
|
*/
|
|
pushRun(runStart, runLength) {
|
|
this.runStart[this.stackSize] = runStart;
|
|
this.runLength[this.stackSize] = runLength;
|
|
this.stackSize += 1;
|
|
}
|
|
|
|
/**
|
|
* Merge runs on TimSort's stack so that the following holds for all i:
|
|
* 1) runLength[i - 3] > runLength[i - 2] + runLength[i - 1]
|
|
* 2) runLength[i - 2] > runLength[i - 1]
|
|
*/
|
|
mergeRuns() {
|
|
while (this.stackSize > 1) {
|
|
let n = this.stackSize - 2;
|
|
|
|
if ((n >= 1 &&
|
|
this.runLength[n - 1] <= this.runLength[n] + this.runLength[n + 1]) ||
|
|
(n >= 2 &&
|
|
this.runLength[n - 2] <= this.runLength[n] + this.runLength[n - 1])) {
|
|
|
|
if (this.runLength[n - 1] < this.runLength[n + 1]) {
|
|
n--;
|
|
}
|
|
|
|
} else if (this.runLength[n] > this.runLength[n + 1]) {
|
|
break;
|
|
}
|
|
this.mergeAt(n);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Merge all runs on TimSort's stack until only one remains.
|
|
*/
|
|
forceMergeRuns() {
|
|
while (this.stackSize > 1) {
|
|
let n = this.stackSize - 2;
|
|
|
|
if (n > 0 && this.runLength[n - 1] < this.runLength[n + 1]) {
|
|
n--;
|
|
}
|
|
|
|
this.mergeAt(n);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Merge the runs on the stack at positions i and i+1. Must be always be called
|
|
* with i=stackSize-2 or i=stackSize-3 (that is, we merge on top of the stack).
|
|
*
|
|
* @param {number} i - Index of the run to merge in TimSort's stack.
|
|
*/
|
|
mergeAt(i) {
|
|
let compare = this.compare;
|
|
let array = this.array;
|
|
|
|
let start1 = this.runStart[i];
|
|
let length1 = this.runLength[i];
|
|
let start2 = this.runStart[i + 1];
|
|
let length2 = this.runLength[i + 1];
|
|
|
|
this.runLength[i] = length1 + length2;
|
|
|
|
if (i === this.stackSize - 3) {
|
|
this.runStart[i + 1] = this.runStart[i + 2];
|
|
this.runLength[i + 1] = this.runLength[i + 2];
|
|
}
|
|
|
|
this.stackSize--;
|
|
|
|
/*
|
|
* Find where the first element in the second run goes in run1. Previous
|
|
* elements in run1 are already in place
|
|
*/
|
|
let k = gallopRight(array[start2], array, start1, length1, 0, compare);
|
|
start1 += k;
|
|
length1 -= k;
|
|
|
|
if (length1 === 0) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Find where the last element in the first run goes in run2. Next elements
|
|
* in run2 are already in place
|
|
*/
|
|
length2 = gallopLeft(array[start1 + length1 - 1], array, start2, length2, length2 - 1, compare);
|
|
|
|
if (length2 === 0) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Merge remaining runs. A tmp array with length = min(length1, length2) is
|
|
* used
|
|
*/
|
|
if (length1 <= length2) {
|
|
this.mergeLow(start1, length1, start2, length2);
|
|
|
|
} else {
|
|
this.mergeHigh(start1, length1, start2, length2);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Merge two adjacent runs in a stable way. The runs must be such that the
|
|
* first element of run1 is bigger than the first element in run2 and the
|
|
* last element of run1 is greater than all the elements in run2.
|
|
* The method should be called when run1.length <= run2.length as it uses
|
|
* TimSort temporary array to store run1. Use mergeHigh if run1.length >
|
|
* run2.length.
|
|
*
|
|
* @param {number} start1 - First element in run1.
|
|
* @param {number} length1 - Length of run1.
|
|
* @param {number} start2 - First element in run2.
|
|
* @param {number} length2 - Length of run2.
|
|
*/
|
|
mergeLow(start1, length1, start2, length2) {
|
|
|
|
let compare = this.compare;
|
|
let array = this.array;
|
|
let tmp = this.tmp;
|
|
let i = 0;
|
|
|
|
for (i = 0; i < length1; i++) {
|
|
tmp[i] = array[start1 + i];
|
|
}
|
|
|
|
let cursor1 = 0;
|
|
let cursor2 = start2;
|
|
let dest = start1;
|
|
|
|
array[dest++] = array[cursor2++];
|
|
|
|
if (--length2 === 0) {
|
|
for (i = 0; i < length1; i++) {
|
|
array[dest + i] = tmp[cursor1 + i];
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (length1 === 1) {
|
|
for (i = 0; i < length2; i++) {
|
|
array[dest + i] = array[cursor2 + i];
|
|
}
|
|
array[dest + length2] = tmp[cursor1];
|
|
return;
|
|
}
|
|
|
|
let minGallop = this.minGallop;
|
|
|
|
while (true) {
|
|
let count1 = 0;
|
|
let count2 = 0;
|
|
let exit = false;
|
|
|
|
do {
|
|
if (compare(array[cursor2], tmp[cursor1]) < 0) {
|
|
array[dest++] = array[cursor2++];
|
|
count2++;
|
|
count1 = 0;
|
|
|
|
if (--length2 === 0) {
|
|
exit = true;
|
|
break;
|
|
}
|
|
|
|
} else {
|
|
array[dest++] = tmp[cursor1++];
|
|
count1++;
|
|
count2 = 0;
|
|
if (--length1 === 1) {
|
|
exit = true;
|
|
break;
|
|
}
|
|
}
|
|
} while ((count1 | count2) < minGallop);
|
|
|
|
if (exit) {
|
|
break;
|
|
}
|
|
|
|
do {
|
|
count1 = gallopRight(array[cursor2], tmp, cursor1, length1, 0, compare);
|
|
|
|
if (count1 !== 0) {
|
|
for (i = 0; i < count1; i++) {
|
|
array[dest + i] = tmp[cursor1 + i];
|
|
}
|
|
|
|
dest += count1;
|
|
cursor1 += count1;
|
|
length1 -= count1;
|
|
if (length1 <= 1) {
|
|
exit = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
array[dest++] = array[cursor2++];
|
|
|
|
if (--length2 === 0) {
|
|
exit = true;
|
|
break;
|
|
}
|
|
|
|
count2 = gallopLeft(tmp[cursor1], array, cursor2, length2, 0, compare);
|
|
|
|
if (count2 !== 0) {
|
|
for (i = 0; i < count2; i++) {
|
|
array[dest + i] = array[cursor2 + i];
|
|
}
|
|
|
|
dest += count2;
|
|
cursor2 += count2;
|
|
length2 -= count2;
|
|
|
|
if (length2 === 0) {
|
|
exit = true;
|
|
break;
|
|
}
|
|
}
|
|
array[dest++] = tmp[cursor1++];
|
|
|
|
if (--length1 === 1) {
|
|
exit = true;
|
|
break;
|
|
}
|
|
|
|
minGallop--;
|
|
|
|
} while (count1 >= DEFAULT_MIN_GALLOPING || count2 >= DEFAULT_MIN_GALLOPING);
|
|
|
|
if (exit) {
|
|
break;
|
|
}
|
|
|
|
if (minGallop < 0) {
|
|
minGallop = 0;
|
|
}
|
|
|
|
minGallop += 2;
|
|
}
|
|
|
|
this.minGallop = minGallop;
|
|
|
|
if (minGallop < 1) {
|
|
this.minGallop = 1;
|
|
}
|
|
|
|
if (length1 === 1) {
|
|
for (i = 0; i < length2; i++) {
|
|
array[dest + i] = array[cursor2 + i];
|
|
}
|
|
array[dest + length2] = tmp[cursor1];
|
|
|
|
} else if (length1 === 0) {
|
|
throw new Error('mergeLow preconditions were not respected');
|
|
|
|
} else {
|
|
for (i = 0; i < length1; i++) {
|
|
array[dest + i] = tmp[cursor1 + i];
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Merge two adjacent runs in a stable way. The runs must be such that the
|
|
* first element of run1 is bigger than the first element in run2 and the
|
|
* last element of run1 is greater than all the elements in run2.
|
|
* The method should be called when run1.length > run2.length as it uses
|
|
* TimSort temporary array to store run2. Use mergeLow if run1.length <=
|
|
* run2.length.
|
|
*
|
|
* @param {number} start1 - First element in run1.
|
|
* @param {number} length1 - Length of run1.
|
|
* @param {number} start2 - First element in run2.
|
|
* @param {number} length2 - Length of run2.
|
|
*/
|
|
mergeHigh(start1, length1, start2, length2) {
|
|
let compare = this.compare;
|
|
let array = this.array;
|
|
let tmp = this.tmp;
|
|
let i = 0;
|
|
|
|
for (i = 0; i < length2; i++) {
|
|
tmp[i] = array[start2 + i];
|
|
}
|
|
|
|
let cursor1 = start1 + length1 - 1;
|
|
let cursor2 = length2 - 1;
|
|
let dest = start2 + length2 - 1;
|
|
let customCursor = 0;
|
|
let customDest = 0;
|
|
|
|
array[dest--] = array[cursor1--];
|
|
|
|
if (--length1 === 0) {
|
|
customCursor = dest - (length2 - 1);
|
|
|
|
for (i = 0; i < length2; i++) {
|
|
array[customCursor + i] = tmp[i];
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (length2 === 1) {
|
|
dest -= length1;
|
|
cursor1 -= length1;
|
|
customDest = dest + 1;
|
|
customCursor = cursor1 + 1;
|
|
|
|
for (i = length1 - 1; i >= 0; i--) {
|
|
array[customDest + i] = array[customCursor + i];
|
|
}
|
|
|
|
array[dest] = tmp[cursor2];
|
|
return;
|
|
}
|
|
|
|
let minGallop = this.minGallop;
|
|
|
|
while (true) {
|
|
let count1 = 0;
|
|
let count2 = 0;
|
|
let exit = false;
|
|
|
|
do {
|
|
if (compare(tmp[cursor2], array[cursor1]) < 0) {
|
|
array[dest--] = array[cursor1--];
|
|
count1++;
|
|
count2 = 0;
|
|
if (--length1 === 0) {
|
|
exit = true;
|
|
break;
|
|
}
|
|
|
|
} else {
|
|
array[dest--] = tmp[cursor2--];
|
|
count2++;
|
|
count1 = 0;
|
|
if (--length2 === 1) {
|
|
exit = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
} while ((count1 | count2) < minGallop);
|
|
|
|
if (exit) {
|
|
break;
|
|
}
|
|
|
|
do {
|
|
count1 = length1 - gallopRight(tmp[cursor2], array, start1, length1, length1 - 1, compare);
|
|
|
|
if (count1 !== 0) {
|
|
dest -= count1;
|
|
cursor1 -= count1;
|
|
length1 -= count1;
|
|
customDest = dest + 1;
|
|
customCursor = cursor1 + 1;
|
|
|
|
for (i = count1 - 1; i >= 0; i--) {
|
|
array[customDest + i] = array[customCursor + i];
|
|
}
|
|
|
|
if (length1 === 0) {
|
|
exit = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
array[dest--] = tmp[cursor2--];
|
|
|
|
if (--length2 === 1) {
|
|
exit = true;
|
|
break;
|
|
}
|
|
|
|
count2 = length2 - gallopLeft(array[cursor1], tmp, 0, length2, length2 - 1, compare);
|
|
|
|
if (count2 !== 0) {
|
|
dest -= count2;
|
|
cursor2 -= count2;
|
|
length2 -= count2;
|
|
customDest = dest + 1;
|
|
customCursor = cursor2 + 1;
|
|
|
|
for (i = 0; i < count2; i++) {
|
|
array[customDest + i] = tmp[customCursor + i];
|
|
}
|
|
|
|
if (length2 <= 1) {
|
|
exit = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
array[dest--] = array[cursor1--];
|
|
|
|
if (--length1 === 0) {
|
|
exit = true;
|
|
break;
|
|
}
|
|
|
|
minGallop--;
|
|
|
|
} while (count1 >= DEFAULT_MIN_GALLOPING || count2 >= DEFAULT_MIN_GALLOPING);
|
|
|
|
if (exit) {
|
|
break;
|
|
}
|
|
|
|
if (minGallop < 0) {
|
|
minGallop = 0;
|
|
}
|
|
|
|
minGallop += 2;
|
|
}
|
|
|
|
this.minGallop = minGallop;
|
|
|
|
if (minGallop < 1) {
|
|
this.minGallop = 1;
|
|
}
|
|
|
|
if (length2 === 1) {
|
|
dest -= length1;
|
|
cursor1 -= length1;
|
|
customDest = dest + 1;
|
|
customCursor = cursor1 + 1;
|
|
|
|
for (i = length1 - 1; i >= 0; i--) {
|
|
array[customDest + i] = array[customCursor + i];
|
|
}
|
|
|
|
array[dest] = tmp[cursor2];
|
|
|
|
} else if (length2 === 0) {
|
|
throw new Error('mergeHigh preconditions were not respected');
|
|
|
|
} else {
|
|
customCursor = dest - (length2 - 1);
|
|
for (i = 0; i < length2; i++) {
|
|
array[customCursor + i] = tmp[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Sort an array in the range [lo, hi) using TimSort.
|
|
*
|
|
* @param {array} array - The array to sort.
|
|
* @param {function=} compare - Item comparison function. Default is
|
|
* alphabetical
|
|
* @param {number} lo - First element in the range (inclusive).
|
|
* @param {number} hi - Last element in the range.
|
|
* comparator.
|
|
*/
|
|
export function sort(array, compare, lo, hi) {
|
|
if (!Array.isArray(array)) {
|
|
throw new TypeError('Can only sort arrays');
|
|
}
|
|
|
|
/*
|
|
* Handle the case where a comparison function is not provided. We do
|
|
* lexicographic sorting
|
|
*/
|
|
if (!compare) {
|
|
compare = alphabeticalCompare;
|
|
|
|
} else if (typeof compare !== 'function') {
|
|
hi = lo;
|
|
lo = compare;
|
|
compare = alphabeticalCompare;
|
|
}
|
|
|
|
if (!lo) {
|
|
lo = 0;
|
|
}
|
|
if (!hi) {
|
|
hi = array.length;
|
|
}
|
|
|
|
let remaining = hi - lo;
|
|
|
|
// The array is already sorted
|
|
if (remaining < 2) {
|
|
return;
|
|
}
|
|
|
|
let runLength = 0;
|
|
// On small arrays binary sort can be used directly
|
|
if (remaining < DEFAULT_MIN_MERGE) {
|
|
runLength = makeAscendingRun(array, lo, hi, compare);
|
|
binaryInsertionSort(array, lo, hi, lo + runLength, compare);
|
|
return;
|
|
}
|
|
|
|
let ts = new TimSort(array, compare);
|
|
|
|
let minRun = minRunLength(remaining);
|
|
|
|
do {
|
|
runLength = makeAscendingRun(array, lo, hi, compare);
|
|
if (runLength < minRun) {
|
|
let force = remaining;
|
|
if (force > minRun) {
|
|
force = minRun;
|
|
}
|
|
|
|
binaryInsertionSort(array, lo, lo + force, lo + runLength, compare);
|
|
runLength = force;
|
|
}
|
|
// Push new run and merge if necessary
|
|
ts.pushRun(lo, runLength);
|
|
ts.mergeRuns();
|
|
|
|
// Go find next run
|
|
remaining -= runLength;
|
|
lo += runLength;
|
|
|
|
} while (remaining !== 0);
|
|
|
|
// Force merging of remaining runs
|
|
ts.forceMergeRuns();
|
|
}
|