yanchengPowerSupply/node_modules/pdfjs-dist/lib/core/pattern.js

959 lines
27 KiB
JavaScript

/**
* @licstart The following is the entire license notice for the
* JavaScript code in this page
*
* Copyright 2022 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* @licend The above is the entire license notice for the
* JavaScript code in this page
*/
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.Pattern = void 0;
exports.getTilingPatternIR = getTilingPatternIR;
var _util = require("../shared/util.js");
var _base_stream = require("./base_stream.js");
var _colorspace = require("./colorspace.js");
var _core_utils = require("./core_utils.js");
const ShadingType = {
FUNCTION_BASED: 1,
AXIAL: 2,
RADIAL: 3,
FREE_FORM_MESH: 4,
LATTICE_FORM_MESH: 5,
COONS_PATCH_MESH: 6,
TENSOR_PATCH_MESH: 7
};
class Pattern {
constructor() {
(0, _util.unreachable)("Cannot initialize Pattern.");
}
static parseShading(shading, xref, res, handler, pdfFunctionFactory, localColorSpaceCache) {
const dict = shading instanceof _base_stream.BaseStream ? shading.dict : shading;
const type = dict.get("ShadingType");
try {
switch (type) {
case ShadingType.AXIAL:
case ShadingType.RADIAL:
return new RadialAxialShading(dict, xref, res, pdfFunctionFactory, localColorSpaceCache);
case ShadingType.FREE_FORM_MESH:
case ShadingType.LATTICE_FORM_MESH:
case ShadingType.COONS_PATCH_MESH:
case ShadingType.TENSOR_PATCH_MESH:
return new MeshShading(shading, xref, res, pdfFunctionFactory, localColorSpaceCache);
default:
throw new _util.FormatError("Unsupported ShadingType: " + type);
}
} catch (ex) {
if (ex instanceof _core_utils.MissingDataException) {
throw ex;
}
handler.send("UnsupportedFeature", {
featureId: _util.UNSUPPORTED_FEATURES.shadingPattern
});
(0, _util.warn)(ex);
return new DummyShading();
}
}
}
exports.Pattern = Pattern;
class BaseShading {
static get SMALL_NUMBER() {
return (0, _util.shadow)(this, "SMALL_NUMBER", 1e-6);
}
constructor() {
if (this.constructor === BaseShading) {
(0, _util.unreachable)("Cannot initialize BaseShading.");
}
}
getIR() {
(0, _util.unreachable)("Abstract method `getIR` called.");
}
}
class RadialAxialShading extends BaseShading {
constructor(dict, xref, resources, pdfFunctionFactory, localColorSpaceCache) {
super();
this.coordsArr = dict.getArray("Coords");
this.shadingType = dict.get("ShadingType");
const cs = _colorspace.ColorSpace.parse({
cs: dict.getRaw("CS") || dict.getRaw("ColorSpace"),
xref,
resources,
pdfFunctionFactory,
localColorSpaceCache
});
const bbox = dict.getArray("BBox");
if (Array.isArray(bbox) && bbox.length === 4) {
this.bbox = _util.Util.normalizeRect(bbox);
} else {
this.bbox = null;
}
let t0 = 0.0,
t1 = 1.0;
if (dict.has("Domain")) {
const domainArr = dict.getArray("Domain");
t0 = domainArr[0];
t1 = domainArr[1];
}
let extendStart = false,
extendEnd = false;
if (dict.has("Extend")) {
const extendArr = dict.getArray("Extend");
extendStart = extendArr[0];
extendEnd = extendArr[1];
}
if (this.shadingType === ShadingType.RADIAL && (!extendStart || !extendEnd)) {
const [x1, y1, r1, x2, y2, r2] = this.coordsArr;
const distance = Math.hypot(x1 - x2, y1 - y2);
if (r1 <= r2 + distance && r2 <= r1 + distance) {
(0, _util.warn)("Unsupported radial gradient.");
}
}
this.extendStart = extendStart;
this.extendEnd = extendEnd;
const fnObj = dict.getRaw("Function");
const fn = pdfFunctionFactory.createFromArray(fnObj);
const NUMBER_OF_SAMPLES = 10;
const step = (t1 - t0) / NUMBER_OF_SAMPLES;
const colorStops = this.colorStops = [];
if (t0 >= t1 || step <= 0) {
(0, _util.info)("Bad shading domain.");
return;
}
const color = new Float32Array(cs.numComps),
ratio = new Float32Array(1);
let rgbColor;
for (let i = 0; i <= NUMBER_OF_SAMPLES; i++) {
ratio[0] = t0 + i * step;
fn(ratio, 0, color, 0);
rgbColor = cs.getRgb(color, 0);
const cssColor = _util.Util.makeHexColor(rgbColor[0], rgbColor[1], rgbColor[2]);
colorStops.push([i / NUMBER_OF_SAMPLES, cssColor]);
}
let background = "transparent";
if (dict.has("Background")) {
rgbColor = cs.getRgb(dict.get("Background"), 0);
background = _util.Util.makeHexColor(rgbColor[0], rgbColor[1], rgbColor[2]);
}
if (!extendStart) {
colorStops.unshift([0, background]);
colorStops[1][0] += BaseShading.SMALL_NUMBER;
}
if (!extendEnd) {
colorStops.at(-1)[0] -= BaseShading.SMALL_NUMBER;
colorStops.push([1, background]);
}
this.colorStops = colorStops;
}
getIR() {
const coordsArr = this.coordsArr;
const shadingType = this.shadingType;
let type, p0, p1, r0, r1;
if (shadingType === ShadingType.AXIAL) {
p0 = [coordsArr[0], coordsArr[1]];
p1 = [coordsArr[2], coordsArr[3]];
r0 = null;
r1 = null;
type = "axial";
} else if (shadingType === ShadingType.RADIAL) {
p0 = [coordsArr[0], coordsArr[1]];
p1 = [coordsArr[3], coordsArr[4]];
r0 = coordsArr[2];
r1 = coordsArr[5];
type = "radial";
} else {
(0, _util.unreachable)(`getPattern type unknown: ${shadingType}`);
}
return ["RadialAxial", type, this.bbox, this.colorStops, p0, p1, r0, r1];
}
}
class MeshStreamReader {
constructor(stream, context) {
this.stream = stream;
this.context = context;
this.buffer = 0;
this.bufferLength = 0;
const numComps = context.numComps;
this.tmpCompsBuf = new Float32Array(numComps);
const csNumComps = context.colorSpace.numComps;
this.tmpCsCompsBuf = context.colorFn ? new Float32Array(csNumComps) : this.tmpCompsBuf;
}
get hasData() {
if (this.stream.end) {
return this.stream.pos < this.stream.end;
}
if (this.bufferLength > 0) {
return true;
}
const nextByte = this.stream.getByte();
if (nextByte < 0) {
return false;
}
this.buffer = nextByte;
this.bufferLength = 8;
return true;
}
readBits(n) {
let buffer = this.buffer;
let bufferLength = this.bufferLength;
if (n === 32) {
if (bufferLength === 0) {
return (this.stream.getByte() << 24 | this.stream.getByte() << 16 | this.stream.getByte() << 8 | this.stream.getByte()) >>> 0;
}
buffer = buffer << 24 | this.stream.getByte() << 16 | this.stream.getByte() << 8 | this.stream.getByte();
const nextByte = this.stream.getByte();
this.buffer = nextByte & (1 << bufferLength) - 1;
return (buffer << 8 - bufferLength | (nextByte & 0xff) >> bufferLength) >>> 0;
}
if (n === 8 && bufferLength === 0) {
return this.stream.getByte();
}
while (bufferLength < n) {
buffer = buffer << 8 | this.stream.getByte();
bufferLength += 8;
}
bufferLength -= n;
this.bufferLength = bufferLength;
this.buffer = buffer & (1 << bufferLength) - 1;
return buffer >> bufferLength;
}
align() {
this.buffer = 0;
this.bufferLength = 0;
}
readFlag() {
return this.readBits(this.context.bitsPerFlag);
}
readCoordinate() {
const bitsPerCoordinate = this.context.bitsPerCoordinate;
const xi = this.readBits(bitsPerCoordinate);
const yi = this.readBits(bitsPerCoordinate);
const decode = this.context.decode;
const scale = bitsPerCoordinate < 32 ? 1 / ((1 << bitsPerCoordinate) - 1) : 2.3283064365386963e-10;
return [xi * scale * (decode[1] - decode[0]) + decode[0], yi * scale * (decode[3] - decode[2]) + decode[2]];
}
readComponents() {
const numComps = this.context.numComps;
const bitsPerComponent = this.context.bitsPerComponent;
const scale = bitsPerComponent < 32 ? 1 / ((1 << bitsPerComponent) - 1) : 2.3283064365386963e-10;
const decode = this.context.decode;
const components = this.tmpCompsBuf;
for (let i = 0, j = 4; i < numComps; i++, j += 2) {
const ci = this.readBits(bitsPerComponent);
components[i] = ci * scale * (decode[j + 1] - decode[j]) + decode[j];
}
const color = this.tmpCsCompsBuf;
if (this.context.colorFn) {
this.context.colorFn(components, 0, color, 0);
}
return this.context.colorSpace.getRgb(color, 0);
}
}
const getB = function getBClosure() {
function buildB(count) {
const lut = [];
for (let i = 0; i <= count; i++) {
const t = i / count,
t_ = 1 - t;
lut.push(new Float32Array([t_ * t_ * t_, 3 * t * t_ * t_, 3 * t * t * t_, t * t * t]));
}
return lut;
}
const cache = [];
return function (count) {
if (!cache[count]) {
cache[count] = buildB(count);
}
return cache[count];
};
}();
class MeshShading extends BaseShading {
static get MIN_SPLIT_PATCH_CHUNKS_AMOUNT() {
return (0, _util.shadow)(this, "MIN_SPLIT_PATCH_CHUNKS_AMOUNT", 3);
}
static get MAX_SPLIT_PATCH_CHUNKS_AMOUNT() {
return (0, _util.shadow)(this, "MAX_SPLIT_PATCH_CHUNKS_AMOUNT", 20);
}
static get TRIANGLE_DENSITY() {
return (0, _util.shadow)(this, "TRIANGLE_DENSITY", 20);
}
constructor(stream, xref, resources, pdfFunctionFactory, localColorSpaceCache) {
super();
if (!(stream instanceof _base_stream.BaseStream)) {
throw new _util.FormatError("Mesh data is not a stream");
}
const dict = stream.dict;
this.shadingType = dict.get("ShadingType");
const bbox = dict.getArray("BBox");
if (Array.isArray(bbox) && bbox.length === 4) {
this.bbox = _util.Util.normalizeRect(bbox);
} else {
this.bbox = null;
}
const cs = _colorspace.ColorSpace.parse({
cs: dict.getRaw("CS") || dict.getRaw("ColorSpace"),
xref,
resources,
pdfFunctionFactory,
localColorSpaceCache
});
this.background = dict.has("Background") ? cs.getRgb(dict.get("Background"), 0) : null;
const fnObj = dict.getRaw("Function");
const fn = fnObj ? pdfFunctionFactory.createFromArray(fnObj) : null;
this.coords = [];
this.colors = [];
this.figures = [];
const decodeContext = {
bitsPerCoordinate: dict.get("BitsPerCoordinate"),
bitsPerComponent: dict.get("BitsPerComponent"),
bitsPerFlag: dict.get("BitsPerFlag"),
decode: dict.getArray("Decode"),
colorFn: fn,
colorSpace: cs,
numComps: fn ? 1 : cs.numComps
};
const reader = new MeshStreamReader(stream, decodeContext);
let patchMesh = false;
switch (this.shadingType) {
case ShadingType.FREE_FORM_MESH:
this._decodeType4Shading(reader);
break;
case ShadingType.LATTICE_FORM_MESH:
const verticesPerRow = dict.get("VerticesPerRow") | 0;
if (verticesPerRow < 2) {
throw new _util.FormatError("Invalid VerticesPerRow");
}
this._decodeType5Shading(reader, verticesPerRow);
break;
case ShadingType.COONS_PATCH_MESH:
this._decodeType6Shading(reader);
patchMesh = true;
break;
case ShadingType.TENSOR_PATCH_MESH:
this._decodeType7Shading(reader);
patchMesh = true;
break;
default:
(0, _util.unreachable)("Unsupported mesh type.");
break;
}
if (patchMesh) {
this._updateBounds();
for (let i = 0, ii = this.figures.length; i < ii; i++) {
this._buildFigureFromPatch(i);
}
}
this._updateBounds();
this._packData();
}
_decodeType4Shading(reader) {
const coords = this.coords;
const colors = this.colors;
const operators = [];
const ps = [];
let verticesLeft = 0;
while (reader.hasData) {
const f = reader.readFlag();
const coord = reader.readCoordinate();
const color = reader.readComponents();
if (verticesLeft === 0) {
if (!(0 <= f && f <= 2)) {
throw new _util.FormatError("Unknown type4 flag");
}
switch (f) {
case 0:
verticesLeft = 3;
break;
case 1:
ps.push(ps.at(-2), ps.at(-1));
verticesLeft = 1;
break;
case 2:
ps.push(ps.at(-3), ps.at(-1));
verticesLeft = 1;
break;
}
operators.push(f);
}
ps.push(coords.length);
coords.push(coord);
colors.push(color);
verticesLeft--;
reader.align();
}
this.figures.push({
type: "triangles",
coords: new Int32Array(ps),
colors: new Int32Array(ps)
});
}
_decodeType5Shading(reader, verticesPerRow) {
const coords = this.coords;
const colors = this.colors;
const ps = [];
while (reader.hasData) {
const coord = reader.readCoordinate();
const color = reader.readComponents();
ps.push(coords.length);
coords.push(coord);
colors.push(color);
}
this.figures.push({
type: "lattice",
coords: new Int32Array(ps),
colors: new Int32Array(ps),
verticesPerRow
});
}
_decodeType6Shading(reader) {
const coords = this.coords;
const colors = this.colors;
const ps = new Int32Array(16);
const cs = new Int32Array(4);
while (reader.hasData) {
const f = reader.readFlag();
if (!(0 <= f && f <= 3)) {
throw new _util.FormatError("Unknown type6 flag");
}
const pi = coords.length;
for (let i = 0, ii = f !== 0 ? 8 : 12; i < ii; i++) {
coords.push(reader.readCoordinate());
}
const ci = colors.length;
for (let i = 0, ii = f !== 0 ? 2 : 4; i < ii; i++) {
colors.push(reader.readComponents());
}
let tmp1, tmp2, tmp3, tmp4;
switch (f) {
case 0:
ps[12] = pi + 3;
ps[13] = pi + 4;
ps[14] = pi + 5;
ps[15] = pi + 6;
ps[8] = pi + 2;
ps[11] = pi + 7;
ps[4] = pi + 1;
ps[7] = pi + 8;
ps[0] = pi;
ps[1] = pi + 11;
ps[2] = pi + 10;
ps[3] = pi + 9;
cs[2] = ci + 1;
cs[3] = ci + 2;
cs[0] = ci;
cs[1] = ci + 3;
break;
case 1:
tmp1 = ps[12];
tmp2 = ps[13];
tmp3 = ps[14];
tmp4 = ps[15];
ps[12] = tmp4;
ps[13] = pi + 0;
ps[14] = pi + 1;
ps[15] = pi + 2;
ps[8] = tmp3;
ps[11] = pi + 3;
ps[4] = tmp2;
ps[7] = pi + 4;
ps[0] = tmp1;
ps[1] = pi + 7;
ps[2] = pi + 6;
ps[3] = pi + 5;
tmp1 = cs[2];
tmp2 = cs[3];
cs[2] = tmp2;
cs[3] = ci;
cs[0] = tmp1;
cs[1] = ci + 1;
break;
case 2:
tmp1 = ps[15];
tmp2 = ps[11];
ps[12] = ps[3];
ps[13] = pi + 0;
ps[14] = pi + 1;
ps[15] = pi + 2;
ps[8] = ps[7];
ps[11] = pi + 3;
ps[4] = tmp2;
ps[7] = pi + 4;
ps[0] = tmp1;
ps[1] = pi + 7;
ps[2] = pi + 6;
ps[3] = pi + 5;
tmp1 = cs[3];
cs[2] = cs[1];
cs[3] = ci;
cs[0] = tmp1;
cs[1] = ci + 1;
break;
case 3:
ps[12] = ps[0];
ps[13] = pi + 0;
ps[14] = pi + 1;
ps[15] = pi + 2;
ps[8] = ps[1];
ps[11] = pi + 3;
ps[4] = ps[2];
ps[7] = pi + 4;
ps[0] = ps[3];
ps[1] = pi + 7;
ps[2] = pi + 6;
ps[3] = pi + 5;
cs[2] = cs[0];
cs[3] = ci;
cs[0] = cs[1];
cs[1] = ci + 1;
break;
}
ps[5] = coords.length;
coords.push([(-4 * coords[ps[0]][0] - coords[ps[15]][0] + 6 * (coords[ps[4]][0] + coords[ps[1]][0]) - 2 * (coords[ps[12]][0] + coords[ps[3]][0]) + 3 * (coords[ps[13]][0] + coords[ps[7]][0])) / 9, (-4 * coords[ps[0]][1] - coords[ps[15]][1] + 6 * (coords[ps[4]][1] + coords[ps[1]][1]) - 2 * (coords[ps[12]][1] + coords[ps[3]][1]) + 3 * (coords[ps[13]][1] + coords[ps[7]][1])) / 9]);
ps[6] = coords.length;
coords.push([(-4 * coords[ps[3]][0] - coords[ps[12]][0] + 6 * (coords[ps[2]][0] + coords[ps[7]][0]) - 2 * (coords[ps[0]][0] + coords[ps[15]][0]) + 3 * (coords[ps[4]][0] + coords[ps[14]][0])) / 9, (-4 * coords[ps[3]][1] - coords[ps[12]][1] + 6 * (coords[ps[2]][1] + coords[ps[7]][1]) - 2 * (coords[ps[0]][1] + coords[ps[15]][1]) + 3 * (coords[ps[4]][1] + coords[ps[14]][1])) / 9]);
ps[9] = coords.length;
coords.push([(-4 * coords[ps[12]][0] - coords[ps[3]][0] + 6 * (coords[ps[8]][0] + coords[ps[13]][0]) - 2 * (coords[ps[0]][0] + coords[ps[15]][0]) + 3 * (coords[ps[11]][0] + coords[ps[1]][0])) / 9, (-4 * coords[ps[12]][1] - coords[ps[3]][1] + 6 * (coords[ps[8]][1] + coords[ps[13]][1]) - 2 * (coords[ps[0]][1] + coords[ps[15]][1]) + 3 * (coords[ps[11]][1] + coords[ps[1]][1])) / 9]);
ps[10] = coords.length;
coords.push([(-4 * coords[ps[15]][0] - coords[ps[0]][0] + 6 * (coords[ps[11]][0] + coords[ps[14]][0]) - 2 * (coords[ps[12]][0] + coords[ps[3]][0]) + 3 * (coords[ps[2]][0] + coords[ps[8]][0])) / 9, (-4 * coords[ps[15]][1] - coords[ps[0]][1] + 6 * (coords[ps[11]][1] + coords[ps[14]][1]) - 2 * (coords[ps[12]][1] + coords[ps[3]][1]) + 3 * (coords[ps[2]][1] + coords[ps[8]][1])) / 9]);
this.figures.push({
type: "patch",
coords: new Int32Array(ps),
colors: new Int32Array(cs)
});
}
}
_decodeType7Shading(reader) {
const coords = this.coords;
const colors = this.colors;
const ps = new Int32Array(16);
const cs = new Int32Array(4);
while (reader.hasData) {
const f = reader.readFlag();
if (!(0 <= f && f <= 3)) {
throw new _util.FormatError("Unknown type7 flag");
}
const pi = coords.length;
for (let i = 0, ii = f !== 0 ? 12 : 16; i < ii; i++) {
coords.push(reader.readCoordinate());
}
const ci = colors.length;
for (let i = 0, ii = f !== 0 ? 2 : 4; i < ii; i++) {
colors.push(reader.readComponents());
}
let tmp1, tmp2, tmp3, tmp4;
switch (f) {
case 0:
ps[12] = pi + 3;
ps[13] = pi + 4;
ps[14] = pi + 5;
ps[15] = pi + 6;
ps[8] = pi + 2;
ps[9] = pi + 13;
ps[10] = pi + 14;
ps[11] = pi + 7;
ps[4] = pi + 1;
ps[5] = pi + 12;
ps[6] = pi + 15;
ps[7] = pi + 8;
ps[0] = pi;
ps[1] = pi + 11;
ps[2] = pi + 10;
ps[3] = pi + 9;
cs[2] = ci + 1;
cs[3] = ci + 2;
cs[0] = ci;
cs[1] = ci + 3;
break;
case 1:
tmp1 = ps[12];
tmp2 = ps[13];
tmp3 = ps[14];
tmp4 = ps[15];
ps[12] = tmp4;
ps[13] = pi + 0;
ps[14] = pi + 1;
ps[15] = pi + 2;
ps[8] = tmp3;
ps[9] = pi + 9;
ps[10] = pi + 10;
ps[11] = pi + 3;
ps[4] = tmp2;
ps[5] = pi + 8;
ps[6] = pi + 11;
ps[7] = pi + 4;
ps[0] = tmp1;
ps[1] = pi + 7;
ps[2] = pi + 6;
ps[3] = pi + 5;
tmp1 = cs[2];
tmp2 = cs[3];
cs[2] = tmp2;
cs[3] = ci;
cs[0] = tmp1;
cs[1] = ci + 1;
break;
case 2:
tmp1 = ps[15];
tmp2 = ps[11];
ps[12] = ps[3];
ps[13] = pi + 0;
ps[14] = pi + 1;
ps[15] = pi + 2;
ps[8] = ps[7];
ps[9] = pi + 9;
ps[10] = pi + 10;
ps[11] = pi + 3;
ps[4] = tmp2;
ps[5] = pi + 8;
ps[6] = pi + 11;
ps[7] = pi + 4;
ps[0] = tmp1;
ps[1] = pi + 7;
ps[2] = pi + 6;
ps[3] = pi + 5;
tmp1 = cs[3];
cs[2] = cs[1];
cs[3] = ci;
cs[0] = tmp1;
cs[1] = ci + 1;
break;
case 3:
ps[12] = ps[0];
ps[13] = pi + 0;
ps[14] = pi + 1;
ps[15] = pi + 2;
ps[8] = ps[1];
ps[9] = pi + 9;
ps[10] = pi + 10;
ps[11] = pi + 3;
ps[4] = ps[2];
ps[5] = pi + 8;
ps[6] = pi + 11;
ps[7] = pi + 4;
ps[0] = ps[3];
ps[1] = pi + 7;
ps[2] = pi + 6;
ps[3] = pi + 5;
cs[2] = cs[0];
cs[3] = ci;
cs[0] = cs[1];
cs[1] = ci + 1;
break;
}
this.figures.push({
type: "patch",
coords: new Int32Array(ps),
colors: new Int32Array(cs)
});
}
}
_buildFigureFromPatch(index) {
const figure = this.figures[index];
(0, _util.assert)(figure.type === "patch", "Unexpected patch mesh figure");
const coords = this.coords,
colors = this.colors;
const pi = figure.coords;
const ci = figure.colors;
const figureMinX = Math.min(coords[pi[0]][0], coords[pi[3]][0], coords[pi[12]][0], coords[pi[15]][0]);
const figureMinY = Math.min(coords[pi[0]][1], coords[pi[3]][1], coords[pi[12]][1], coords[pi[15]][1]);
const figureMaxX = Math.max(coords[pi[0]][0], coords[pi[3]][0], coords[pi[12]][0], coords[pi[15]][0]);
const figureMaxY = Math.max(coords[pi[0]][1], coords[pi[3]][1], coords[pi[12]][1], coords[pi[15]][1]);
let splitXBy = Math.ceil((figureMaxX - figureMinX) * MeshShading.TRIANGLE_DENSITY / (this.bounds[2] - this.bounds[0]));
splitXBy = Math.max(MeshShading.MIN_SPLIT_PATCH_CHUNKS_AMOUNT, Math.min(MeshShading.MAX_SPLIT_PATCH_CHUNKS_AMOUNT, splitXBy));
let splitYBy = Math.ceil((figureMaxY - figureMinY) * MeshShading.TRIANGLE_DENSITY / (this.bounds[3] - this.bounds[1]));
splitYBy = Math.max(MeshShading.MIN_SPLIT_PATCH_CHUNKS_AMOUNT, Math.min(MeshShading.MAX_SPLIT_PATCH_CHUNKS_AMOUNT, splitYBy));
const verticesPerRow = splitXBy + 1;
const figureCoords = new Int32Array((splitYBy + 1) * verticesPerRow);
const figureColors = new Int32Array((splitYBy + 1) * verticesPerRow);
let k = 0;
const cl = new Uint8Array(3),
cr = new Uint8Array(3);
const c0 = colors[ci[0]],
c1 = colors[ci[1]],
c2 = colors[ci[2]],
c3 = colors[ci[3]];
const bRow = getB(splitYBy),
bCol = getB(splitXBy);
for (let row = 0; row <= splitYBy; row++) {
cl[0] = (c0[0] * (splitYBy - row) + c2[0] * row) / splitYBy | 0;
cl[1] = (c0[1] * (splitYBy - row) + c2[1] * row) / splitYBy | 0;
cl[2] = (c0[2] * (splitYBy - row) + c2[2] * row) / splitYBy | 0;
cr[0] = (c1[0] * (splitYBy - row) + c3[0] * row) / splitYBy | 0;
cr[1] = (c1[1] * (splitYBy - row) + c3[1] * row) / splitYBy | 0;
cr[2] = (c1[2] * (splitYBy - row) + c3[2] * row) / splitYBy | 0;
for (let col = 0; col <= splitXBy; col++, k++) {
if ((row === 0 || row === splitYBy) && (col === 0 || col === splitXBy)) {
continue;
}
let x = 0,
y = 0;
let q = 0;
for (let i = 0; i <= 3; i++) {
for (let j = 0; j <= 3; j++, q++) {
const m = bRow[row][i] * bCol[col][j];
x += coords[pi[q]][0] * m;
y += coords[pi[q]][1] * m;
}
}
figureCoords[k] = coords.length;
coords.push([x, y]);
figureColors[k] = colors.length;
const newColor = new Uint8Array(3);
newColor[0] = (cl[0] * (splitXBy - col) + cr[0] * col) / splitXBy | 0;
newColor[1] = (cl[1] * (splitXBy - col) + cr[1] * col) / splitXBy | 0;
newColor[2] = (cl[2] * (splitXBy - col) + cr[2] * col) / splitXBy | 0;
colors.push(newColor);
}
}
figureCoords[0] = pi[0];
figureColors[0] = ci[0];
figureCoords[splitXBy] = pi[3];
figureColors[splitXBy] = ci[1];
figureCoords[verticesPerRow * splitYBy] = pi[12];
figureColors[verticesPerRow * splitYBy] = ci[2];
figureCoords[verticesPerRow * splitYBy + splitXBy] = pi[15];
figureColors[verticesPerRow * splitYBy + splitXBy] = ci[3];
this.figures[index] = {
type: "lattice",
coords: figureCoords,
colors: figureColors,
verticesPerRow
};
}
_updateBounds() {
let minX = this.coords[0][0],
minY = this.coords[0][1],
maxX = minX,
maxY = minY;
for (let i = 1, ii = this.coords.length; i < ii; i++) {
const x = this.coords[i][0],
y = this.coords[i][1];
minX = minX > x ? x : minX;
minY = minY > y ? y : minY;
maxX = maxX < x ? x : maxX;
maxY = maxY < y ? y : maxY;
}
this.bounds = [minX, minY, maxX, maxY];
}
_packData() {
let i, ii, j, jj;
const coords = this.coords;
const coordsPacked = new Float32Array(coords.length * 2);
for (i = 0, j = 0, ii = coords.length; i < ii; i++) {
const xy = coords[i];
coordsPacked[j++] = xy[0];
coordsPacked[j++] = xy[1];
}
this.coords = coordsPacked;
const colors = this.colors;
const colorsPacked = new Uint8Array(colors.length * 3);
for (i = 0, j = 0, ii = colors.length; i < ii; i++) {
const c = colors[i];
colorsPacked[j++] = c[0];
colorsPacked[j++] = c[1];
colorsPacked[j++] = c[2];
}
this.colors = colorsPacked;
const figures = this.figures;
for (i = 0, ii = figures.length; i < ii; i++) {
const figure = figures[i],
ps = figure.coords,
cs = figure.colors;
for (j = 0, jj = ps.length; j < jj; j++) {
ps[j] *= 2;
cs[j] *= 3;
}
}
}
getIR() {
return ["Mesh", this.shadingType, this.coords, this.colors, this.figures, this.bounds, this.bbox, this.background];
}
}
class DummyShading extends BaseShading {
getIR() {
return ["Dummy"];
}
}
function getTilingPatternIR(operatorList, dict, color) {
const matrix = dict.getArray("Matrix");
const bbox = _util.Util.normalizeRect(dict.getArray("BBox"));
const xstep = dict.get("XStep");
const ystep = dict.get("YStep");
const paintType = dict.get("PaintType");
const tilingType = dict.get("TilingType");
if (bbox[2] - bbox[0] === 0 || bbox[3] - bbox[1] === 0) {
throw new _util.FormatError(`Invalid getTilingPatternIR /BBox array: [${bbox}].`);
}
return ["TilingPattern", color, operatorList, matrix, bbox, xstep, ystep, paintType, tilingType];
}