yanchengPowerSupply/node_modules/dommatrix/dist/dommatrix.esm.js

818 lines
25 KiB
JavaScript

/*!
* DOMMatrix v1.0.3 (https://thednp.github.io/dommatrix/)
* Copyright 2022 © thednp
* Licensed under MIT (https://github.com/thednp/DOMMatrix/blob/master/LICENSE)
*/
// DOMMatrix Static methods
// * `fromArray` is a more simple implementation, should also accept Float[32/64]Array;
// * `fromMatrix` load values from another CSSMatrix/DOMMatrix instance or JSON object;
// * `fromString` parses and loads values from any valid CSS transform string (TransformList).
/**
* Creates a new mutable `CSSMatrix` instance given an array of 16/6 floating point values.
* This static method invalidates arrays that contain non-number elements.
*
* If the array has six values, the result is a 2D matrix; if the array has 16 values,
* the result is a 3D matrix. Otherwise, a TypeError exception is thrown.
*
* @param {CSSM.matrix | CSSM.matrix3d} array an `Array` to feed values from.
* @return {CSSMatrix} the resulted matrix.
*/
function fromArray(array) {
const m = new CSSMatrix();
const a = Array.from(array);
if (!a.every((n) => !Number.isNaN(n))) {
throw TypeError(`CSSMatrix: "${array}" must only have numbers.`);
}
if (a.length === 16) {
const [m11, m12, m13, m14,
m21, m22, m23, m24,
m31, m32, m33, m34,
m41, m42, m43, m44] = a;
m.m11 = m11;
m.a = m11;
m.m21 = m21;
m.c = m21;
m.m31 = m31;
m.m41 = m41;
m.e = m41;
m.m12 = m12;
m.b = m12;
m.m22 = m22;
m.d = m22;
m.m32 = m32;
m.m42 = m42;
m.f = m42;
m.m13 = m13;
m.m23 = m23;
m.m33 = m33;
m.m43 = m43;
m.m14 = m14;
m.m24 = m24;
m.m34 = m34;
m.m44 = m44;
} else if (a.length === 6) {
const [M11, M12, M21, M22, M41, M42] = a;
m.m11 = M11;
m.a = M11;
m.m12 = M12;
m.b = M12;
m.m21 = M21;
m.c = M21;
m.m22 = M22;
m.d = M22;
m.m41 = M41;
m.e = M41;
m.m42 = M42;
m.f = M42;
} else {
throw new TypeError('CSSMatrix: expecting an Array of 6/16 values.');
}
return m;
}
/**
* Creates a new mutable `CSSMatrix` instance given an existing matrix or a
* `DOMMatrix` instance which provides the values for its properties.
*
* @param {CSSMatrix | DOMMatrix | CSSM.JSONMatrix} m the source matrix to feed values from.
* @return {CSSMatrix} the resulted matrix.
*/
function fromMatrix(m) {
const keys = Object.keys(new CSSMatrix());
if (typeof m === 'object' && keys.every((k) => k in m)) {
return fromArray(
[m.m11, m.m12, m.m13, m.m14,
m.m21, m.m22, m.m23, m.m24,
m.m31, m.m32, m.m33, m.m34,
m.m41, m.m42, m.m43, m.m44],
);
}
throw TypeError(`CSSMatrix: "${JSON.stringify(m)}" is not a DOMMatrix / CSSMatrix / JSON compatible object.`);
}
/**
* Creates a new mutable `CSSMatrix` given any valid CSS transform string,
* or what we call `TransformList`:
*
* * `matrix(a, b, c, d, e, f)` - valid matrix() transform function
* * `matrix3d(m11, m12, m13, ...m44)` - valid matrix3d() transform function
* * `translate(tx, ty) rotateX(alpha)` - any valid transform function(s)
*
* @copyright thednp © 2021
*
* @param {string} source valid CSS transform string syntax.
* @return {CSSMatrix} the resulted matrix.
*/
function fromString(source) {
if (typeof source !== 'string') {
throw TypeError(`CSSMatrix: "${source}" is not a string.`);
}
const str = String(source).replace(/\s/g, '');
let m = new CSSMatrix();
const invalidStringError = `CSSMatrix: invalid transform string "${source}"`;
// const px = ['perspective'];
// const length = ['translate', 'translate3d', 'translateX', 'translateY', 'translateZ'];
// const deg = ['rotate', 'rotate3d', 'rotateX', 'rotateY', 'rotateZ', 'skew', 'skewX', 'skewY'];
// const abs = ['scale', 'scale3d', 'matrix', 'matrix3d'];
// const transformFunctions = px.concat(length, deg, abs);
str.split(')').filter((f) => f).forEach((tf) => {
const [prop, value] = tf.split('(');
// invalidate empty string
if (!value) throw TypeError(invalidStringError);
const components = value.split(',')
.map((n) => (n.includes('rad') ? parseFloat(n) * (180 / Math.PI) : parseFloat(n)));
const [x, y, z, a] = components;
const xyz = [x, y, z];
const xyza = [x, y, z, a];
// single number value expected
if (prop === 'perspective' && x && [y, z].every((n) => n === undefined)) {
m.m34 = -1 / x;
// 6/16 number values expected
} else if (prop.includes('matrix') && [6, 16].includes(components.length)
&& components.every((n) => !Number.isNaN(+n))) {
const values = components.map((n) => (Math.abs(n) < 1e-6 ? 0 : n));
// @ts-ignore -- conditions should suffice
m = m.multiply(fromArray(values));
// 3 values expected
} else if (prop === 'translate3d' && xyz.every((n) => !Number.isNaN(+n))) {
m = m.translate(x, y, z);
// single/double number value(s) expected
} else if (prop === 'translate' && x && z === undefined) {
m = m.translate(x, y || 0, 0);
// all 4 values expected
} else if (prop === 'rotate3d' && xyza.every((n) => !Number.isNaN(+n)) && a) {
m = m.rotateAxisAngle(x, y, z, a);
// single value expected
} else if (prop === 'rotate' && x && [y, z].every((n) => n === undefined)) {
m = m.rotate(0, 0, x);
// 3 values expected
} else if (prop === 'scale3d' && xyz.every((n) => !Number.isNaN(+n)) && xyz.some((n) => n !== 1)) {
m = m.scale(x, y, z);
// single value expected
} else if (prop === 'scale' && !Number.isNaN(x) && x !== 1 && z === undefined) {
const nosy = Number.isNaN(+y);
const sy = nosy ? x : y;
m = m.scale(x, sy, 1);
// single/double value expected
} else if (prop === 'skew' && (x || (!Number.isNaN(x) && y)) && z === undefined) {
m = m.skew(x, y || 0);
} else if (/[XYZ]/.test(prop) && x && [y, z].every((n) => n === undefined) // a single value expected
&& ['translate', 'rotate', 'scale', 'skew'].some((p) => prop.includes(p))) {
if (['skewX', 'skewY'].includes(prop)) {
// @ts-ignore unfortunately
m = m[prop](x);
} else {
const fn = prop.replace(/[XYZ]/, '');
const axis = prop.replace(fn, '');
const idx = ['X', 'Y', 'Z'].indexOf(axis);
const def = fn === 'scale' ? 1 : 0;
const axeValues = [
idx === 0 ? x : def,
idx === 1 ? x : def,
idx === 2 ? x : def];
// @ts-ignore unfortunately
m = m[fn](...axeValues);
}
} else {
throw TypeError(invalidStringError);
}
});
return m;
}
/**
* Returns an *Array* containing elements which comprise the matrix.
* The method can return either the 16 elements or the 6 elements
* depending on the value of the `is2D` parameter.
*
* @param {CSSMatrix | DOMMatrix | CSSM.JSONMatrix} m the source matrix to feed values from.
* @param {boolean=} is2D *Array* representation of the matrix
* @return {CSSM.matrix | CSSM.matrix3d} an *Array* representation of the matrix
*/
function toArray(m, is2D) {
if (is2D) {
return [m.a, m.b, m.c, m.d, m.e, m.f];
}
return [m.m11, m.m12, m.m13, m.m14,
m.m21, m.m22, m.m23, m.m24,
m.m31, m.m32, m.m33, m.m34,
m.m41, m.m42, m.m43, m.m44];
}
// Transform Functions
// https://www.w3.org/TR/css-transforms-1/#transform-functions
/**
* Creates a new `CSSMatrix` for the translation matrix and returns it.
* This method is equivalent to the CSS `translate3d()` function.
*
* https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/translate3d
*
* @param {number} x the `x-axis` position.
* @param {number} y the `y-axis` position.
* @param {number} z the `z-axis` position.
* @return {CSSMatrix} the resulted matrix.
*/
function Translate(x, y, z) {
const m = new CSSMatrix();
m.m41 = x;
m.e = x;
m.m42 = y;
m.f = y;
m.m43 = z;
return m;
}
/**
* Creates a new `CSSMatrix` for the rotation matrix and returns it.
*
* http://en.wikipedia.org/wiki/Rotation_matrix
*
* @param {number} rx the `x-axis` rotation.
* @param {number} ry the `y-axis` rotation.
* @param {number} rz the `z-axis` rotation.
* @return {CSSMatrix} the resulted matrix.
*/
function Rotate(rx, ry, rz) {
const m = new CSSMatrix();
const degToRad = Math.PI / 180;
const radX = rx * degToRad;
const radY = ry * degToRad;
const radZ = rz * degToRad;
// minus sin() because of right-handed system
const cosx = Math.cos(radX);
const sinx = -Math.sin(radX);
const cosy = Math.cos(radY);
const siny = -Math.sin(radY);
const cosz = Math.cos(radZ);
const sinz = -Math.sin(radZ);
const m11 = cosy * cosz;
const m12 = -cosy * sinz;
m.m11 = m11;
m.a = m11;
m.m12 = m12;
m.b = m12;
m.m13 = siny;
const m21 = sinx * siny * cosz + cosx * sinz;
m.m21 = m21;
m.c = m21;
const m22 = cosx * cosz - sinx * siny * sinz;
m.m22 = m22;
m.d = m22;
m.m23 = -sinx * cosy;
m.m31 = sinx * sinz - cosx * siny * cosz;
m.m32 = sinx * cosz + cosx * siny * sinz;
m.m33 = cosx * cosy;
return m;
}
/**
* Creates a new `CSSMatrix` for the rotation matrix and returns it.
* This method is equivalent to the CSS `rotate3d()` function.
*
* https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/rotate3d
*
* @param {number} x the `x-axis` vector length.
* @param {number} y the `y-axis` vector length.
* @param {number} z the `z-axis` vector length.
* @param {number} alpha the value in degrees of the rotation.
* @return {CSSMatrix} the resulted matrix.
*/
function RotateAxisAngle(x, y, z, alpha) {
const m = new CSSMatrix();
const length = Math.sqrt(x * x + y * y + z * z);
if (length === 0) {
// bad vector length, return identity
return m;
}
const X = x / length;
const Y = y / length;
const Z = z / length;
const angle = alpha * (Math.PI / 360);
const sinA = Math.sin(angle);
const cosA = Math.cos(angle);
const sinA2 = sinA * sinA;
const x2 = X * X;
const y2 = Y * Y;
const z2 = Z * Z;
const m11 = 1 - 2 * (y2 + z2) * sinA2;
m.m11 = m11;
m.a = m11;
const m12 = 2 * (X * Y * sinA2 + Z * sinA * cosA);
m.m12 = m12;
m.b = m12;
m.m13 = 2 * (X * Z * sinA2 - Y * sinA * cosA);
const m21 = 2 * (Y * X * sinA2 - Z * sinA * cosA);
m.m21 = m21;
m.c = m21;
const m22 = 1 - 2 * (z2 + x2) * sinA2;
m.m22 = m22;
m.d = m22;
m.m23 = 2 * (Y * Z * sinA2 + X * sinA * cosA);
m.m31 = 2 * (Z * X * sinA2 + Y * sinA * cosA);
m.m32 = 2 * (Z * Y * sinA2 - X * sinA * cosA);
m.m33 = 1 - 2 * (x2 + y2) * sinA2;
return m;
}
/**
* Creates a new `CSSMatrix` for the scale matrix and returns it.
* This method is equivalent to the CSS `scale3d()` function, except it doesn't
* accept {x, y, z} transform origin parameters.
*
* https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/scale3d
*
* @param {number} x the `x-axis` scale.
* @param {number} y the `y-axis` scale.
* @param {number} z the `z-axis` scale.
* @return {CSSMatrix} the resulted matrix.
*/
function Scale(x, y, z) {
const m = new CSSMatrix();
m.m11 = x;
m.a = x;
m.m22 = y;
m.d = y;
m.m33 = z;
return m;
}
/**
* Creates a new `CSSMatrix` for the shear of both the `x-axis` and`y-axis`
* matrix and returns it. This method is equivalent to the CSS `skew()` function.
*
* https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/skew
*
* @param {number} angleX the X-angle in degrees.
* @param {number} angleY the Y-angle in degrees.
* @return {CSSMatrix} the resulted matrix.
*/
function Skew(angleX, angleY) {
const m = new CSSMatrix();
if (angleX) {
const radX = (angleX * Math.PI) / 180;
const tX = Math.tan(radX);
m.m21 = tX;
m.c = tX;
}
if (angleY) {
const radY = (angleY * Math.PI) / 180;
const tY = Math.tan(radY);
m.m12 = tY;
m.b = tY;
}
return m;
}
/**
* Creates a new `CSSMatrix` for the shear of the `x-axis` rotation matrix and
* returns it. This method is equivalent to the CSS `skewX()` function.
*
* https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/skewX
*
* @param {number} angle the angle in degrees.
* @return {CSSMatrix} the resulted matrix.
*/
function SkewX(angle) {
return Skew(angle, 0);
}
/**
* Creates a new `CSSMatrix` for the shear of the `y-axis` rotation matrix and
* returns it. This method is equivalent to the CSS `skewY()` function.
*
* https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/skewY
*
* @param {number} angle the angle in degrees.
* @return {CSSMatrix} the resulted matrix.
*/
function SkewY(angle) {
return Skew(0, angle);
}
/**
* Creates a new `CSSMatrix` resulted from the multiplication of two matrixes
* and returns it. Both matrixes are not changed.
*
* @param {CSSMatrix | DOMMatrix | CSSM.JSONMatrix} m1 the first matrix.
* @param {CSSMatrix | DOMMatrix | CSSM.JSONMatrix} m2 the second matrix.
* @return {CSSMatrix} the resulted matrix.
*/
function Multiply(m1, m2) {
const m11 = m2.m11 * m1.m11 + m2.m12 * m1.m21 + m2.m13 * m1.m31 + m2.m14 * m1.m41;
const m12 = m2.m11 * m1.m12 + m2.m12 * m1.m22 + m2.m13 * m1.m32 + m2.m14 * m1.m42;
const m13 = m2.m11 * m1.m13 + m2.m12 * m1.m23 + m2.m13 * m1.m33 + m2.m14 * m1.m43;
const m14 = m2.m11 * m1.m14 + m2.m12 * m1.m24 + m2.m13 * m1.m34 + m2.m14 * m1.m44;
const m21 = m2.m21 * m1.m11 + m2.m22 * m1.m21 + m2.m23 * m1.m31 + m2.m24 * m1.m41;
const m22 = m2.m21 * m1.m12 + m2.m22 * m1.m22 + m2.m23 * m1.m32 + m2.m24 * m1.m42;
const m23 = m2.m21 * m1.m13 + m2.m22 * m1.m23 + m2.m23 * m1.m33 + m2.m24 * m1.m43;
const m24 = m2.m21 * m1.m14 + m2.m22 * m1.m24 + m2.m23 * m1.m34 + m2.m24 * m1.m44;
const m31 = m2.m31 * m1.m11 + m2.m32 * m1.m21 + m2.m33 * m1.m31 + m2.m34 * m1.m41;
const m32 = m2.m31 * m1.m12 + m2.m32 * m1.m22 + m2.m33 * m1.m32 + m2.m34 * m1.m42;
const m33 = m2.m31 * m1.m13 + m2.m32 * m1.m23 + m2.m33 * m1.m33 + m2.m34 * m1.m43;
const m34 = m2.m31 * m1.m14 + m2.m32 * m1.m24 + m2.m33 * m1.m34 + m2.m34 * m1.m44;
const m41 = m2.m41 * m1.m11 + m2.m42 * m1.m21 + m2.m43 * m1.m31 + m2.m44 * m1.m41;
const m42 = m2.m41 * m1.m12 + m2.m42 * m1.m22 + m2.m43 * m1.m32 + m2.m44 * m1.m42;
const m43 = m2.m41 * m1.m13 + m2.m42 * m1.m23 + m2.m43 * m1.m33 + m2.m44 * m1.m43;
const m44 = m2.m41 * m1.m14 + m2.m42 * m1.m24 + m2.m43 * m1.m34 + m2.m44 * m1.m44;
return fromArray(
[m11, m12, m13, m14,
m21, m22, m23, m24,
m31, m32, m33, m34,
m41, m42, m43, m44],
);
}
/**
* Creates and returns a new `DOMMatrix` compatible instance
* with equivalent instance.
* @class CSSMatrix
*
* @author thednp <https://github.com/thednp/DOMMatrix/>
* @see https://developer.mozilla.org/en-US/docs/Web/API/DOMMatrix
*/
class CSSMatrix {
/**
* @constructor
* @param {any} args accepts all parameter configurations:
* * valid CSS transform string,
* * CSSMatrix/DOMMatrix instance,
* * a 6/16 elements *Array*.
*/
constructor(...args) {
const m = this;
// array 6
m.a = 1; m.b = 0;
m.c = 0; m.d = 1;
m.e = 0; m.f = 0;
// array 16
m.m11 = 1; m.m12 = 0; m.m13 = 0; m.m14 = 0;
m.m21 = 0; m.m22 = 1; m.m23 = 0; m.m24 = 0;
m.m31 = 0; m.m32 = 0; m.m33 = 1; m.m34 = 0;
m.m41 = 0; m.m42 = 0; m.m43 = 0; m.m44 = 1;
if (args.length) {
const ARGS = [16, 6].some((l) => l === args.length) ? args : args[0];
return m.setMatrixValue(ARGS);
}
return m;
}
/**
* A `Boolean` whose value is `true` if the matrix is the identity matrix. The identity
* matrix is one in which every value is 0 except those on the main diagonal from top-left
* to bottom-right corner (in other words, where the offsets in each direction are equal).
*
* @return {boolean} the current property value
*/
get isIdentity() {
const m = this;
return (m.m11 === 1 && m.m12 === 0 && m.m13 === 0 && m.m14 === 0
&& m.m21 === 0 && m.m22 === 1 && m.m23 === 0 && m.m24 === 0
&& m.m31 === 0 && m.m32 === 0 && m.m33 === 1 && m.m34 === 0
&& m.m41 === 0 && m.m42 === 0 && m.m43 === 0 && m.m44 === 1);
}
/**
* A `Boolean` flag whose value is `true` if the matrix was initialized as a 2D matrix
* and `false` if the matrix is 3D.
*
* @return {boolean} the current property value
*/
get is2D() {
const m = this;
return (m.m31 === 0 && m.m32 === 0 && m.m33 === 1 && m.m34 === 0 && m.m43 === 0 && m.m44 === 1);
}
/**
* The `setMatrixValue` method replaces the existing matrix with one computed
* in the browser. EG: `matrix(1,0.25,-0.25,1,0,0)`
*
* The method accepts any *Array* values, the result of
* `DOMMatrix` instance method `toFloat64Array()` / `toFloat32Array()` calls
* or `CSSMatrix` instance method `toArray()`.
*
* This method expects valid *matrix()* / *matrix3d()* string values, as well
* as other transform functions like *translateX(10px)*.
*
* @param {string | CSSM.matrix | CSSM.matrix3d | CSSMatrix | DOMMatrix | CSSM.JSONMatrix} source
* @return {CSSMatrix} the matrix instance
*/
setMatrixValue(source) {
const m = this;
// CSS transform string source - TransformList first
if (typeof source === 'string' && source.length && source !== 'none') {
return fromString(source);
}
// [Arguments list | Array] come second
if ([Array, Float64Array, Float32Array].some((a) => source instanceof a)) {
// @ts-ignore
return fromArray(source);
}
// new CSSMatrix(CSSMatrix | DOMMatrix | JSON) last
if ([CSSMatrix, DOMMatrix, Object].some((a) => source instanceof a)) {
// @ts-ignore
return fromMatrix(source);
}
return m;
}
/**
* Returns a *Float32Array* containing elements which comprise the matrix.
* The method can return either the 16 elements or the 6 elements
* depending on the value of the `is2D` parameter.
*
* @param {boolean=} is2D *Array* representation of the matrix
* @return {Float32Array} an *Array* representation of the matrix
*/
toFloat32Array(is2D) {
return Float32Array.from(toArray(this, is2D));
}
/**
* Returns a *Float64Array* containing elements which comprise the matrix.
* The method can return either the 16 elements or the 6 elements
* depending on the value of the `is2D` parameter.
*
* @param {boolean=} is2D *Array* representation of the matrix
* @return {Float64Array} an *Array* representation of the matrix
*/
toFloat64Array(is2D) {
return Float64Array.from(toArray(this, is2D));
}
/**
* Creates and returns a string representation of the matrix in `CSS` matrix syntax,
* using the appropriate `CSS` matrix notation.
*
* matrix3d *matrix3d(m11, m12, m13, m14, m21, ...)*
* matrix *matrix(a, b, c, d, e, f)*
*
* @return {string} a string representation of the matrix
*/
toString() {
const m = this;
const { is2D } = m;
const values = m.toFloat64Array(is2D).join(', ');
const type = is2D ? 'matrix' : 'matrix3d';
return `${type}(${values})`;
}
/**
* Returns a JSON representation of the `CSSMatrix` instance, a standard *Object*
* that includes `{a,b,c,d,e,f}` and `{m11,m12,m13,..m44}` properties as well
* as the `is2D` & `isIdentity` properties.
*
* The result can also be used as a second parameter for the `fromMatrix` static method
* to load values into another matrix instance.
*
* @return {CSSM.JSONMatrix} an *Object* with all matrix values.
*/
toJSON() {
const m = this;
const { is2D, isIdentity } = m;
return { ...m, is2D, isIdentity };
}
/**
* The Multiply method returns a new CSSMatrix which is the result of this
* matrix multiplied by the passed matrix, with the passed matrix to the right.
* This matrix is not modified.
*
* @param {CSSMatrix | DOMMatrix | CSSM.JSONMatrix} m2 CSSMatrix
* @return {CSSMatrix} The resulted matrix.
*/
multiply(m2) {
return Multiply(this, m2);
}
/**
* The translate method returns a new matrix which is this matrix post
* multiplied by a translation matrix containing the passed values. If the z
* component is undefined, a 0 value is used in its place. This matrix is not
* modified.
*
* @param {number} x X component of the translation value.
* @param {number=} y Y component of the translation value.
* @param {number=} z Z component of the translation value.
* @return {CSSMatrix} The resulted matrix
*/
translate(x, y, z) {
const X = x;
let Y = y;
let Z = z;
if (Y === undefined) Y = 0;
if (Z === undefined) Z = 0;
return Multiply(this, Translate(X, Y, Z));
}
/**
* The scale method returns a new matrix which is this matrix post multiplied by
* a scale matrix containing the passed values. If the z component is undefined,
* a 1 value is used in its place. If the y component is undefined, the x
* component value is used in its place. This matrix is not modified.
*
* @param {number} x The X component of the scale value.
* @param {number=} y The Y component of the scale value.
* @param {number=} z The Z component of the scale value.
* @return {CSSMatrix} The resulted matrix
*/
scale(x, y, z) {
const X = x;
let Y = y;
let Z = z;
if (Y === undefined) Y = x;
if (Z === undefined) Z = 1; // Z must be 1 if undefined
return Multiply(this, Scale(X, Y, Z));
}
/**
* The rotate method returns a new matrix which is this matrix post multiplied
* by each of 3 rotation matrices about the major axes, first X, then Y, then Z.
* If the y and z components are undefined, the x value is used to rotate the
* object about the z axis, as though the vector (0,0,x) were passed. All
* rotation values are in degrees. This matrix is not modified.
*
* @param {number} rx The X component of the rotation, or Z if Y and Z are null.
* @param {number=} ry The (optional) Y component of the rotation value.
* @param {number=} rz The (optional) Z component of the rotation value.
* @return {CSSMatrix} The resulted matrix
*/
rotate(rx, ry, rz) {
let RX = rx;
let RY = ry || 0;
let RZ = rz || 0;
if (typeof rx === 'number' && ry === undefined && rz === undefined) {
RZ = RX; RX = 0; RY = 0;
}
return Multiply(this, Rotate(RX, RY, RZ));
}
/**
* The rotateAxisAngle method returns a new matrix which is this matrix post
* multiplied by a rotation matrix with the given axis and `angle`. The right-hand
* rule is used to determine the direction of rotation. All rotation values are
* in degrees. This matrix is not modified.
*
* @param {number} x The X component of the axis vector.
* @param {number} y The Y component of the axis vector.
* @param {number} z The Z component of the axis vector.
* @param {number} angle The angle of rotation about the axis vector, in degrees.
* @return {CSSMatrix} The resulted matrix
*/
rotateAxisAngle(x, y, z, angle) {
if ([x, y, z, angle].some((n) => Number.isNaN(+n))) {
throw new TypeError('CSSMatrix: expecting 4 values');
}
return Multiply(this, RotateAxisAngle(x, y, z, angle));
}
/**
* Specifies a skew transformation along the `x-axis` by the given angle.
* This matrix is not modified.
*
* @param {number} angle The angle amount in degrees to skew.
* @return {CSSMatrix} The resulted matrix
*/
skewX(angle) {
return Multiply(this, SkewX(angle));
}
/**
* Specifies a skew transformation along the `y-axis` by the given angle.
* This matrix is not modified.
*
* @param {number} angle The angle amount in degrees to skew.
* @return {CSSMatrix} The resulted matrix
*/
skewY(angle) {
return Multiply(this, SkewY(angle));
}
/**
* Specifies a skew transformation along both the `x-axis` and `y-axis`.
* This matrix is not modified.
*
* @param {number} angleX The X-angle amount in degrees to skew.
* @param {number} angleY The angle amount in degrees to skew.
* @return {CSSMatrix} The resulted matrix
*/
skew(angleX, angleY) {
return Multiply(this, Skew(angleX, angleY));
}
/**
* Transforms a specified vector using the matrix, returning a new
* {x,y,z,w} Tuple *Object* comprising the transformed vector.
* Neither the matrix nor the original vector are altered.
*
* The method is equivalent with `transformPoint()` method
* of the `DOMMatrix` constructor.
*
* @param {CSSM.PointTuple | DOMPoint} t Tuple with `{x,y,z,w}` components
* @return {CSSM.PointTuple | DOMPoint} the resulting Tuple
*/
transformPoint(t) {
const m = this;
const x = m.m11 * t.x + m.m21 * t.y + m.m31 * t.z + m.m41 * t.w;
const y = m.m12 * t.x + m.m22 * t.y + m.m32 * t.z + m.m42 * t.w;
const z = m.m13 * t.x + m.m23 * t.y + m.m33 * t.z + m.m43 * t.w;
const w = m.m14 * t.x + m.m24 * t.y + m.m34 * t.z + m.m44 * t.w;
return t instanceof DOMPoint
? new DOMPoint(x, y, z, w)
: {
x, y, z, w,
};
}
}
// Add Transform Functions to CSSMatrix object
// without creating a TypeScript namespace.
Object.assign(CSSMatrix, {
Translate,
Rotate,
RotateAxisAngle,
Scale,
SkewX,
SkewY,
Skew,
Multiply,
fromArray,
fromMatrix,
fromString,
toArray,
});
var version = "1.0.3";
/**
* A global namespace for library version.
* @type {string}
*/
const Version = version;
/** @typedef {import('../types/index')} */
Object.assign(CSSMatrix, { Version });
export { CSSMatrix as default };