
Highlighting System 5.0
User Guide

Highlighting System for Unity Engine available at: http://u3d.as/hUz

Online documentation available at: http://docs.deepdream.games/HighlightingSystem/5.0/

http://u3d.as/hUz
http://docs.deepdream.games/HighlightingSystem/5.0/

Contents

1 Overview

 1.1 Package overview

2 Integration to your project

 2.1 Basic integration

 2.2 Hover highlight

 2.3 Quick tips

3 API

 3.1 Highlighter

 3.2 HighlighterBlocker

 3.3 HighlighterCore

 3.4 HighlightingBase

 3.5 HighlightingBlitter

 3.6 HighlightingRenderer

 3.7 HighlightingPreset

 3.8 AntiAliasing

 3.9 BlurDirections

 3.10 Easing

 3.11 HighlighterMode

 3.12 LoopMode

 3.13 RendererFilterMode

4 Advanced tips

 4.1 Using custom transparent shaders

 4.2 Anti-aliasing

5 Limitations

6 Known issues

7 Support

8 Changelog

 8.1 v5.0

9 Upgrade notes

 9.1 Upgrading from v4.3 to v5.0

1 Overview

Highlighting System package allows you to easily integrate outline glow e�ect for objects

highlighting in your Unity project. It allows you to make any object highlightable and works

on all major platforms, where Image E�ects is supported.

1.1 Package overview

After the package installation, in the Plugins\HighlightingSystem folder you will �nd all the

scripts and shaders required for the Highlighting System to work. All scripts in this folder

are in the HighlightingSystem namespace.

In the HighlightingSystemDemo folder, you will �nd example scenes and scripts intended

to demonstrate how to integrate and use Highlighting System in your own projects. Feel

free to completely remove this folder at any time. All scripts in this folder are in the

HighlightingSystem.Demo namespace.

2 Integration to your project

2.1 Basic integration

1. Import Highlighting System package from the Unity Asset Store to your project.

2. Add HighlightingRenderer component to the Camera. Order of this component

(among other Image E�ects on this Camera) de�nes when the highlighting bu�er will

be applied to the rendered frame.

3. Add Highlighter component to the GameObject 's you want to make highlightable.

http://docs.unity3d.com/ScriptReference/GameObject.html

4. Setup Highlighter components as you need. Refer to the Highlighter API to �gure

out what each option means.

5. Tweak settings of the HighlightingRenderer component to change the look of

highlighting. Please note that the highlighting presets are stored (serialized) in the

component itself (will be saved in scenes and / or prefabs), and you can manipulate

them at runtime using HighlightingRenderer API.

2.2 Hover highlight

1. Add RaycastController component to Camera .

2. Add HighlighterHover component to Camera or any other persistent GameObject .

3. Hook HighlighterHover to the OnHover event of the RaycastController by

pressing the + button on the bottom right �rst, then dragging HighlighterHover

component to the appeared None (Object) �eld and selecting HighlighterHover >

OnHover function. You can also hook any other custom handlers to the OnHover

event this way.

4. Set desired highlighting hover color in the HighlighterHover component.

See also HighlighterInteractionDemo class source for an example of more advanced

interaction with the Highlighter 's.

2.3 Quick tips

Tween has higher priority than Constant highlighting, so if both modes are enabled

on the Highlighter - you won't see any e�ects from tweaking Constant highlighting

properties (you can change priorities in Highlighter.UpdateHighlighting() method

source by simply rearranging pieces of code responsible for each highlighting mode).

You can control Highlighter 's directly from scripts by using their API. For example:

http://docs.unity3d.com/ScriptReference/Camera.html
http://docs.unity3d.com/ScriptReference/Camera.html
http://docs.unity3d.com/ScriptReference/GameObject.html

using UnityEngine;
using HighlightingSystem;

public class Example : MonoBehaviour
{
 // Assign Highlighter component to this field in Inspector
 public Highlighter highlighter;

 void Awake()
 {
 highligter.ConstantOn(Color.red);
 }
}

Don't forget to add using HighlightingSystem; directive to the beginning of your

scripts in order to be able to access Highlighting System API.

If you doesn't want to use HighlighterHover - to manually highlight object only for a

single frame call Hover(Color.red) on the target Highlighter (See

HighlighterHover.cs and HighlighterInteractionDemo.cs scripts for an example).

If you want to implement completely custom highlighting logic from scratch - derive

your class from the HighlighterCore .

When con�guring HighlightingRenderer component - increasing blur iterations will

help you to improve outline glow quality, but try to keep this value as low as possible

for better performance.

Any renderer component derived from Unity's Renderer class can be highlighted. By

default - highlighting of the following renderers is enabled: MeshRenderer ,

SkinnedMeshRenderer , SpriteRenderer , ParticleSystemRenderer . Feel free to tune

types list globally in the DefaultRendererFilter() method source as you need, or

implement custom RendererFilter .

On mobile platforms, don't forget to set the Use 32-bit Display Bu�er checkbox under

the Resolution and Presentation section of the Unity Player Settings.

http://docs.unity3d.com/ScriptReference/Renderer.html
http://docs.unity3d.com/ScriptReference/MeshRenderer.html
http://docs.unity3d.com/ScriptReference/SkinnedMeshRenderer.html
http://docs.unity3d.com/ScriptReference/SpriteRenderer.html
http://docs.unity3d.com/ScriptReference/ParticleSystemRenderer.html

Highlighting System comes with several built-in color gradients (located in

HighlightingSystemDemo/Editor/HighlightingSystem.gradients gradients library �le).

In order to use them, you can switch to this library here:

3 API

3.1 Highlighter

class in HighlightingSystem / Inherits from: HighlighterCore

Description:

Main component to use on the objects you want to make highlightable. Three di�erent

highlighting modes available (listed in descending priority order):

1. Hover

Highlights object only for a single frame, so you can trigger it every frame for the

object under the mouse cursor.

2. Tween

Useful to pay attention on a speci�c object (game tutorial item for example).

3. Constant

Used to turn on/o� constant highlighting on an object (for example, to highlight all

pickable items on screen).

4. Occluder

Not actually a highlighting mode, but highlighter will turn into occluder only if no

other modes are active.

In case multiple highlighting modes enabled on the highlighter - mode with higher priority

will take e�ect.

using UnityEngine;
using HighlightingSystem;

public class Example : MonoBehaviour
{
 private Highlighter highlighter;

 void Awake()
 {
 highlighter = gameObject.AddComponent<Highlighter>();
 highlighter.ConstantOn(Color.red);
 }
}

See also: HighlighterCore

Properties:

bool constant

Enables constant highlighting.

Color constantColor

Constant highlighting color.

Easing constantEasing

De�nes alpha channel curve used to perform constant highlighting fade in / out

transitions. See Easing .

float constantFadeInTime

Time in seconds it will take for constant highlighting to fade in. (color.a will be

changing from 0 to constantColor.a during that time).

float constantFadeOutTime

Time in seconds it will take for constant highlighting to fade out. (color.a will be

changing from constantColor.a to 0 during that time).

float constantFadeTime

Shortcut to set constantFadeInTime and constantFadeOutTime at once.

bool constantUseUnscaledTime

Use Time.unscaledTime instead of Time.time when performing constant fade in /

out transitions.

List<Transform> filterList

List of Transform components to use in �ltering. Make sure to trigger SetDirty()

after modifying this list in order for changes to take e�ect. See also: filterMode .

RendererFilterMode filterMode

De�nes Renderers �ltering mode. Does nothing if custom rendererFilter is assigned.

See RendererFilterMode .

bool occluder

When enabled - if object is not highlighted, it will turn into highlighting occluder. (See

'05 OccluderModes' demo scene for an example). Most likely you'll want to enable

this on your main character. See also: HighlighterMode.Occluder .

bool overlay

When enabled - highlighting for this object will be rendered on top of any other

geometry. See also: HighlighterMode.Overlay

https://docs.unity3d.com/ScriptReference/Transform.html

bool tween

Enables tween highlighting.

float tweenDelay

Delay in seconds before tween will start playing. Can also be used to shift tween start

position by setting to negative value (e.g. tweenDelay = -Random.value *

tweenDuration;).

float tweenDuration

Time in seconds for tween to playback once.

Easing tweenEasing

De�nes how tween highlighting color gradient value is evaluated. See Easing .

Gradient tweenGradient

Tween color gradient.

LoopMode tweenLoop

See LoopMode .

int tweenRepeatCount

Number of times tween will be played (or −1 to play forever). This value will be taken

into account only if tweenLoop is set to LoopMode.Loop or LoopMode.PingPong .

bool tweenReverse

Tween will play in reverse when this �ag is set.

bool tweenUseUnscaledTime

Use Time.unscaledTime instead of Time.time for tween playback.

Public Methods:

void ConstantOff(float time)

Fade out constant highlighting using speci�ed transition duration.

void ConstantOffImmediate()

Turn o� constant highlighting immediately (without fade out).

void ConstantOn(Color color, float time)

Fade in constant highlighting using speci�ed color and transition duration.

void ConstantOn(float time)

Fade in constant highlighting using speci�ed transition duration.

void ConstantOnImmediate(Color color)

Turn on constant highlighting with given color immediately (without fade in).

void ConstantOnImmediate()

Turn on constant highlighting immediately (without fade in).

void ConstantSet(float fadeTime, bool value)

Base method for setting constant highlighting mode.

void ConstantSwitch(float time)

Switch constant highlighting using speci�ed transition duration.

void ConstantSwitchImmediate()

Switch constant highlighting immediately (without fade in/out).

void Hover(Color color)

Turn on highlighting only in current frame using speci�ed color.

void Off()

Turn o� all highlighting modes.

void TweenSet(bool value)

Base method for setting tween highlighting mode.

void TweenStart()

Shortcut for TweenSet(true)

void TweenStop()

Shortcut for TweenSet(false)

Static Methods:

Color HSVToRGB(float hue, float saturation, float value)

Converts hue, saturation and value parameters into corresponding color.

3.2 HighlighterBlocker

class in HighlightingSystem / Inherits from: MonoBehaviour

Description:

Renderer 's on GameObject 's with this component (or any of it's children) will never be

highlighted.

http://docs.unity3d.com/ScriptReference/Renderer.html
http://docs.unity3d.com/ScriptReference/GameObject.html

3.3 HighlighterCore

class in HighlightingSystem / Inherits from: MonoBehaviour

Description:

Base class for all highlighters. If you doesn't want to use provided Highlighter

component and want to implement custom highlighting logic instead - inherit from this

class and override UpdateHighlighting() method where you should update mode and

color properties. See Highlighter class sources for an example. Please note that for

safety (to avoid exceptions), this class hides MonoBehaviour 's Awake() , OnEnable() ,

OnDisable() , OnDestroy() methods from all inheritors, so instead you should override

AwakeSafe() , OnEnableSafe() , OnDisableSafe() , OnDestroySafe() methods

correspondingly.

Delegates:

bool RendererFilter(Renderer renderer, List<int> submeshIndices)

Delegate to use for globalRendererFilter and rendererFilter , which will be

triggered after each SetDirty() call to update renderers which should be

highlighted.

In your own implementation of this delegate - return true to highlight renderer

passed as an argument and �ll submeshIndices list with the list of submesh indices

which should be highlighted (or −1 to highlight all of them). Submesh indices

correspond to the material indices in Materials list of the Renderer component:

https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

Make sure to keep this delegate implementation as simple as possible or you may

experience performance degradation. Refer to the DefaultRendererFilter for an

implementation example.

Properties:

Color color

Color to use for highlighting.

bool forceRender

Enables force-rendering mode. When rendering highlighting for this highlighter

instance - no frustum culling or occlusion culling will be performed for it's renderers

(though frustum clipping still takes place, since near and far frustum planes de�ne

depth bu�er range in world space) and renderers from all LOD levels will be always

rendered for all cameras (only for the highlighting – that doesn't a�ect regular object

rendering in any way). Please be considerate in enabling this mode, or you may

experience performance degradation.

HighlighterMode mode

See HighlighterMode .

RendererFilter rendererFilter

Renderer �lter to use for this HighlighterCore instance. If set to none -

globalRendererFilter will be used instead.

Public Methods:

void SetDirty()

Reinitialize GameObject renderers and materials. Call this method before or after

your highlightable object has changed (added and/or removed) it's child objects or

any materials and/or shaders (for example, when your game character has switched

it's weapon). Feel free to call this method multiple times in a single update -

reinitialization will occur only once at the rendering stage.

Static Properties:

RendererFilter globalRendererFilter

Global renderer �lter which is going to be used if rendererFilter is not explicitly

assigned.

ReadOnlyCollection<HighlighterCore> highlighters

Collection of all enabled highlighters. Make sure to add using

System.Collections.ObjectModel; directive in your scripts if you want to use this

collection.

Static Methods:

bool DefaultRendererFilter(Renderer renderer, List<int>
submeshIndices)

 Default renderer �lter implementation which is going to be used if

globalRendererFilter is not assigned.

http://docs.unity3d.com/ScriptReference/GameObject.html

static public bool DefaultRendererFilter(Renderer renderer, List<int>
submeshIndices)
{
 // Do not highlight this renderer if it has HighlighterBlocker in parent
 if (renderer.GetComponentInParent<HighlighterBlocker>() != null) { return
false; }

 bool pass = false;

 if (renderer is MeshRenderer) { pass = true; }
 else if (renderer is SkinnedMeshRenderer) { pass = true; }
 else if (renderer is SpriteRenderer) { pass = true; }
 else if (renderer is ParticleSystemRenderer) { pass = true; }

 if (pass)
 {
 // Highlight all submeshes
 submeshIndices.Add(-1);
 }

 return pass;
}

3.4 HighlightingBase

class in HighlightingSystem / Inherits from: MonoBehaviour

Description:

Internal base class which implements core Highlighter 's rendering functionality. In most

cases you should use HighlightingRenderer instead.

Properties:

AntiAliasing antiAliasing

Anti-aliasing value for the highlighting RenderTexture . Set to

AntiAliasing.QualitySettings by default.

HighlightingBlitter blitter

Get or set HighlightingBlitter instance, which will be used to blit highlighting

rendering results. Set to null to make HighlightingBase blit during the

OnRenderImage(RenderTexture src, RenderTexture dst) callback (default

behaviour for most Image E�ects in Unity).

BlurDirections blurDirections

De�nes directions in which highlighting bu�er will be shifted/blurred (default is

BlurDirections.Diagonal). This option allows �ner control of solid highlighting

modes. BlurDirections.All is more expensive than BlurDirections.Diagonal or

BlurDirections.Straight . See Also: BlurDirections

float blurIntensity

Highlighting intensity. Internally de�nes the value by which highlighting bu�er alpha

channel will be multiplied after each blur iteration.

float blurMinSpread

Blur Min Spread. Lower values give better looking blur, but require more iterations to

get large blurs. Pixel o�set for each blur iteration is calculated as blurMinSpread +

blurSpread * Iteration Index . Usually, the sum of blurMinSpread and

blurSpread lies between 0.5 and 1.0.

float blurSpread

Blur Spread. Lower values give better looking blur, but require more iterations to get

large blurs. Pixel o�set for each blur iteration is calculated as blurMinSpread +

blurSpread * Iteration Index . Usually, the sum of blurMinSpread and

blurSpread lies between 0.5 and 1.0.

http://docs.unity3d.com/ScriptReference/RenderTexture.html

int downsampleFactor

Highlighting bu�er downsampling factor. Allowed values are 1 (No downsampling), 2

(Half), 4 (Quarter). Internally de�nes the size of the highlighting bu�er by dividing

frame bu�er (screen) size with this value.

float fillAlpha

Global inner �ll alpha value. Currently, there is no way to make it work on a per-

instance basis, so this setting will a�ect all Highlighter 's.

bool isSupported

Returns true if Highlighting System is supported on the current platform. Internally

this checks for SystemInfo.supportsImageEffects ,

SystemInfo.SupportsRenderTextureFormat(RenderTextureFormat.ARGB32) and

isSupported value of all highlighting shaders.

int iterations

Blur iterations. Number of blur iterations to be performed on the highlighting bu�er.

Larger number means more blur.

Public Methods:

void Blit(RenderTexture src, RenderTexture dst)

Compose highlightingBuffer with src RenderTexture and output result to the dst

RenderTexture . To be used only in custom scripts derived from

HighlightingRenderer component to explicitly control highlighting blit. Make sure to

also override OnRenderImage method. Please note that highlightingBuffer will be

updated for the current frame only during BeforeImageEffectsOpaque camera event,

so calling this method earlier will probably lead to undesired results.

https://docs.unity3d.com/ScriptReference/SystemInfo-supportsImageEffects.html
https://docs.unity3d.com/ScriptReference/SystemInfo.SupportsRenderTextureFormat.html
https://docs.unity3d.com/ScriptReference/Shader-isSupported.html
http://docs.unity3d.com/ScriptReference/RenderTexture.html
http://docs.unity3d.com/ScriptReference/RenderTexture.html
https://docs.unity3d.com/ScriptReference/Rendering.CameraEvent.html

3.5 HighlightingBlitter

class in HighlightingSystem / Inherits from: MonoBehaviour

Description:

You should add this component to the current camera if you want to apply the highlighting

bu�er rendered on another camera during current camera rendering. You should assign

this component instance to the blitter �eld in that case. Order of this component

(among other Image E�ects on this Camera) will de�ne the point at which highlighting

bu�er will be applied to the rendered frame. Make sure that the Camera with

HighlightingBlitter component has higher depth than the Camera with

HighlightingRenderer which is using this HighlightingBlitter component instance.

https://docs.unity3d.com/ScriptReference/Camera-depth.html

3.6 HighlightingRenderer

class in HighlightingSystem / Inherits from: HighlightingBase

Description:

Main component to assign to the Camera. This class, on top of the core HighlightingBase

implements functionality to manipulate highlighters rendering presets. Highlighting presets

stored locally, in each instance of the HighlightingRenderer component using Unity

native serialization system. That means they are saved along with prefabs and/or scenes.

To reset to default, copy and paste presets between instances of the

HighlightingRenderer components or between projects – please use Reset, Copy

Component and Paste Component Values context menu options correspondingly (you can

access them by clicking on a little gear icon to the right):

Properties:

ReadOnlyCollection<HighlightingPreset> presets

Returns stored presets as ReadOnlyCollection<HighlightingPreset> . Make sure to

add using System.Collections.ObjectModel; directive in your scripts if you want to

use this collection.

Public Methods:

bool AddPreset(HighlightingPreset preset, bool overwrite)

Add (store) preset. Returns false if preset with this name already exists and overwrite

�ag is not set. Returns true otherwise.

void ApplyPreset(HighlightingPreset preset)

Apply speci�ed preset settings.

void ClearPresets()

Clear all stored presets.

bool GetPreset(string name, out HighlightingPreset preset)

Get stored preset by name. Returns true if preset with this name has been found in

the list of stored presets.

bool LoadPreset(string name)

Find stored preset by name and apply it's settings.

bool RemovePreset(string name)

Find stored preset by name and remove it. Returns true if preset with this name has

been found and removed. Returns false otherwise.

Static Properties:

List<HighlightingPreset> defaultPresets

Readonly list of default presets.

3.7 HighlightingPreset

struct in HighlightingSystem / Inherits from: ValueType

Description:

Struct used to store HighlightingRenderer (HighlightingBase) settings.

Properties:

BlurDirections blurDirections

See HighlightingBase.blurDirections .

float blurIntensity

See HighlightingBase.blurIntensity .

float blurMinSpread

See HighlightingBase.blurMinSpread .

float blurSpread

See HighlightingBase.blurSpread .

int downsampleFactor

See HighlightingBase.downsampleFactor .

float fillAlpha

See HighlightingBase.fillAlpha .

int iterations

See HighlightingBase.iterations .

string name

Preset name.

3.8 AntiAliasing

enum in HighlightingSystem / Inherits from: Enum

Description:

Anti-aliasing settings to use when rendering highlighting.

Static Properties:

QualitySettings

Use QualitySettings.antiAliasing value (or RenderTexture.antiAliasing of

Camera.targetTexture when rendering to texture).

Disabled

Disable multisample anti-aliasing.

MSAA2x

2x Multisample anti-aliasing.

MSAA4x

4x Multisample anti-aliasing.

MSAA8x

8x Multisample anti-aliasing.

https://docs.unity3d.com/ScriptReference/QualitySettings-antiAliasing.html
https://docs.unity3d.com/ScriptReference/RenderTexture-antiAliasing.html
https://docs.unity3d.com/ScriptReference/Camera-targetTexture.html

3.9 BlurDirections

enum in HighlightingSystem / Inherits from: Enum

Description:

De�nes blur directions of the highlighting bu�er.

Static Properties:

Diagonal

Blur in diagonal directions (top-left, top-right, bottom-left, bottom-right).

Straight

Blur in straight directions (top, bottom, left, right).

All

Blur in diagonal and straight directions (top, bottom, left, right, top-left, top-right,

bottom-left, bottom-right).

3.10 Easing

enum in HighlightingSystem / Inherits from: Enum

Description:

De�nes how tween highlighting color gradient value is evaluated or how constant

highlighting alpha channel value is eased during fade in and out transitions.

Static Properties:

Linear

y = x;

QuadIn

y = x * x;

QuadOut

y = -x * (x - 2f);

QuadInOut

y = x < 0.5f ? 2f * x * x : 2f * x * (2f - x) - 1f;

CubicIn

y = x * x * x;

CubicOut

x = x - 1f;
y = x * x * x + 1f;

CubicInOut

if (x < 0.5f)
{
 y = 4f * x * x * x;
}
else
{
 x = 2f * x - 2f;
 y = 0.5f * (x * x * x + 2f);
}

SineIn

y = 1f - Mathf.Cos(x * Mathf.PI * 0.5f);

SineOut

y = Mathf.Sin(x * Mathf.PI * 0.5f);

SineInOut

y = -0.5f * (Mathf.Cos(x * Mathf.PI) - 1f);

3.11 HighlighterMode

enum in HighlightingSystem / Inherits from: Enum

Description:

Determines how to render each HighlighterCore instance.

Static Properties:

Disabled

Highlighting will not be rendered in this mode.

Default

Highlighting will be occluded by other geometry.

Overlay

Highlighting will not be occluded by other geomtry.

Occluder

Turn object into highlighting occluder (the one which always occludes any highlighting

over it's shape).

3.12 LoopMode

enum in HighlightingSystem / Inherits from: Enum

Description:

Determines how tweenGradient is sampled outside of a single tween iteration.

Static Properties:

Once

When tween reaches the end of a single iteration - it will automatically stop playing.

Loop

When tween reaches the end of a single iteration - it will start over from the

beginning.

PingPong

When tween reaches the end of a single iteration - it will ping pong back between

beginning and end.

ClampForever

When tween reaches the end of a single iteration - it will stay at the last color value

speci�ed in gradient forever.

3.13 RendererFilterMode

enum in HighlightingSystem / Inherits from: Enum

Description:

De�nes how Highlighter will utilize filterList to perform Renderer 's �ltering.

Static Properties:

None

All Renderer 's found in child Transform 's will be highlighted.

Include

Renderer 's only on Transform 's (and any of their children) speci�ed in filterList

will be highlighted.

Exclude

Renderer 's on Transform 's (and any of their children) speci�ed in filterList will

be excluded from highlighting.

http://docs.unity3d.com/ScriptReference/Renderer.html
http://docs.unity3d.com/ScriptReference/Renderer.html
https://docs.unity3d.com/ScriptReference/Transform.html
http://docs.unity3d.com/ScriptReference/Renderer.html
https://docs.unity3d.com/ScriptReference/Transform.html
http://docs.unity3d.com/ScriptReference/Renderer.html
https://docs.unity3d.com/ScriptReference/Transform.html

4 Advanced tips

4.1 Using custom transparent shaders

In order to make custom transparent shaders properly highlightable:

1. Make sure that RenderType shader tag is set to TransparentCutout or Transparent

(check this for more info). Otherwise – such shader will be interpreted by the

Highlighting System as an opaque shader, and alpha channel of your material's main

texture will not be taken into account.

2. Make sure that your custom shader has _MainTex property of type 2D (Texture).

Highlighting System will use texture assigned to this property to detect transparent

areas by comparing texture alpha channel with the threshold value, taken from:

_Cutoff (Float) property if your custom shader has it, or

Highlighter 's internal transparentCutoff variable otherwise (set to 0.5 by

default. You can change this value in the HighlighterRenderer.cs script).

Note that the main texture with its o�set and scale values is cached by the Highlighting

System only on highlighter's initialization, which takes place after instantiating

Highlighter component and after each call to SetDirty() . Because of that, your

changes to the main texture properties will not be re�ected by the highlighting without the

call to SetDirty() method.

Also, please note that if your shader handles _Cutoff property di�erently (not with the

default alpha clip clip(alpha - _Cutoff) expression) – the resulting higlighting may

di�er from what's rendered by your custom shader.

4.2 Anti-aliasing

Hardware anti-aliasing (or MSAA, Multi-Sample Anti-Aliasing) is enabled in Unity if Anti

Aliasing property is not set to Disabled in Edit > Project Settings > Quality settings. Note

that there are multiple quality levels all with their own anti-aliasing settings.

Hardware anti-aliasing has several signi�cant drawbacks:

It is not compatible with Legacy Deferred Lighting and Deferred Shading rendering

paths

It is not compatible with HDR rendering

There is no way in Unity to access and use non-MSAA-resolved _CameraDepthTexture

in Image E�ects. So if you enable anti-aliasing for the highlighting bu�er -

http://docs.unity3d.com/Manual/SL-ShaderReplacement.html
http://docs.unity3d.com/Manual/SL-Properties.html
http://docs.unity3d.com/Manual/RenderTech-DeferredLighting.html
http://docs.unity3d.com/Manual/RenderTech-DeferredShading.html
http://docs.unity3d.com/Manual/HDR.html

imprecisions between anti-aliased color bu�er and non-anti-aliased depth texture will

produce rendering artifacts (as seen on the left side of this image):

Same issue a�ects shadows rendering in Unity, so it seems like there is currently no

way to �x that:

Due to all of the above – it is not recommended to use hardware anti-aliasing in your

project. You can replace it with Antialiasing Image E�ect from the Unity Standard Assets

package.

http://assetstore.unity.com/packages/essentials/asset-packs/standard-assets-32351

5 Limitations

Due to the Image E�ect nature of the Highlighting System – it has several limitations:

1. Multi-layer highlighting. This isn't possible to show highlighting of an object which is

obscured by other highlighted object.

2. Inverse highlighting occlusion (highlight only parts obscured by other objects).

Despite the fact that this can be implemented for simple convex geometry such as

this shown on the image above – complex arbitrary meshes will occlude their own

parts, so they will become highlighted:

3. Mixing HighlightingRenderer settings.

This isn't possible to use di�erent highlighting settings on a per-object basis.

HighlightingRenderer settings always apply to the whole image only.

6 Known issues

1. Currently (in Unity 2018.1.0f1), there is no API exposed to properly support Single

Pass Instanced (Preview) stereo rendering path for Image E�ects.

2. Unity Editor may hang or crash on high-resolution displays (such as Retina® displays

used in MacBook®) when hardware anti-aliasing is enabled. Hardware anti-aliasing

option (enabled by default for new Unity projects) basically acts as a multiplier for

your game view resolution, so in case you're experiencing this issue – you are

probably running out of video memory and/or exceeding maximum allowed

RenderTexture size. To �x this - either disable hardware anti-aliasing in Quality

Settings or reduce your game view screen resolution using Aspect Drop-down.

3. Highlighting doesn't work properly on iOS platform if hardware anti-aliasing is

enabled. There is a very low chance that someone needs this considering the device

screen DPI and performance drop that comes from enabling this option on a mobile

device.

http://trello.com/c/3VZtewR9/104-investigate-and-fix-hanging-on-mac
http://docs.unity3d.com/ScriptReference/RenderTexture.html
http://docs.unity3d.com/Manual/class-QualitySettings.html
http://docs.unity3d.com/Manual/GameView.html

7 Support

Here you can �nd Highlighting System development board which you can use to check if a

speci�c bug �x or a feature is already known or in development:

http://trello.com/b/GmwO3VNJ

New hot �xes and tips are always posted here: https://trello.com/c/lTRmC9Yv

Please feel free to send your bug reports, feedback, suggestions, questions or feature

requests to: support@deepdream.games

In order to help me resolve your issue faster – please make sure to provide the following

information in your email:

1. Invoice number in case you're asking for support for the �rst time. This isn't 100%

necessary, but I'm prioritizing emails from users with known invoice numbers, since

that allows me to instantly send them modi�ed scripts and/or shaders of the

Highlighting System, or even the whole package as soon as I have a solution for any

particular issue. You can �nd your invoice number in the PDF attached to the 'Unity

Asset Store purchase con�rmation' email here:

2. Unity version

3. Highlighting System version (v5.0 in case this Documentation is provided to you along

with the package)

4. Operating system version (e.g. Windows 10 64-bit)

5. Graphics card model (e.g. NVIDIA GeForce GTX 980)

http://trello.com/b/GmwO3VNJ
https://trello.com/c/lTRmC9Yv
mailto:support@deepdream.games

6. Mobile device version in case of mobile-related issues (please �nd your device on

http://www.gsmarena.com/ and include the link. For example:

http://www.gsmarena.com/asus_zenfone_3_ze552kl-8106.php)

7. (Optional) Archived example project to reproduce your issue (either attached to email

if it's below 20Mb, or a link to any �le sharing service). Please note that this is not

necessary to include the Library folder (only Assets and ProjectSettings is required).

8. (Optional) Screenshots or videos depicting the problem. This is optional, but often 1

screenshot worth 1000 words ;)

http://www.gsmarena.com/
http://www.gsmarena.com/asus_zenfone_3_ze552kl-8106.php)

8 Changelog

8.1 v5.0

Fully reworked and improved Highlighter component which is now capable of

covering more than 90% of all highlighting use-cases without any scripting.

Now you can inherit from the HighlighterCore class to implement custom

highlighting logic without having to worry about breaking compatibility with the

future versions of the package.

Highlighter / HighlighterCore has been optimized and is no longer using

Update() or Coroutines. (See 10000 update calls Unity Blog post for more info)

Flashing highlighting mode has been replaced with fully-featured tween, which

supports color gradients.

Implemented ability to specify Renderers and submeshes of each Renderer to

highlight (RendererFilter 's).

Fully reworked demo scripts intended to teach you the best and most performant

ways of using Highlighting System in your own projects.

Implemented solid fill alpha value control (a�ects all Highlighter 's).

Orthographic Camera Projection mode compatibility.

Fixed rendering to texture when Stereo Rendering is enabled.

Improved documentation, which is now also available online.

All demo scripts have been moved into the HighlightingSystem.Demo namespace to

avoid type name collisions. You will have to add using HighlightingSystem.Demo;

directive to reference them from your own scripts.

Fixed highlighting of negatively scaled Renderers. https://trello.com/c/nUOlKQ6S

Fixed NullReferenceException in Highlighter.FillBufferInternal .

https://trello.com/c/zIfJdCkY

Fixed setting material properties (e.g. _Color) via MaterialPropertyBlock also

a�ects highlighting if property name matches. https://trello.com/c/WUfBXE8B

Fixed Dither.shader won't compile as of Unity 2017. https://trello.com/c/QIM6kksZ

https://blogs.unity3d.com/2015/12/23/1k-update-calls/
http://docs.deepdream.games/HighlightingSystem
https://trello.com/c/nUOlKQ6S
https://trello.com/c/zIfJdCkY
https://trello.com/c/WUfBXE8B
https://trello.com/c/QIM6kksZ

9 Upgrade notes

9.1 Upgrading from v4.3 to v5.0

1. Open Unity Asset Store and locate Highlighting System asset. Press Update button.

2. In the appeared Import Unity Package window - press All and then Import buttons.

3. Remove the following �les (you can use Alt + Click to expand all subdirectories

recursively):

Assets
├──HighlightingSystemDemo
│ ├──Scripts
│ │ ├──Advanced
│ │ │ └──HighlighterItem.cs
│ │ ├──Basic
│ │ │ ├──BooHighlighterController.boo
│ │ │ └──JSHighlighterController.js
│ │ └──Service
│ │ ├──ColorTool.cs
│ │ ├──ScreenSpaceCanvas.cs
│ │ └──WorldSpaceCanvas.cs
│ └──Documentation.pdf
└──Plugins
 └──HighlightingSystem
 ├──Scripts
 │ └──Internal
 │ └──HighlighterInternal.cs
 └──link.xml

4. Rename CameraTargeting script (in the

Assets/HighlightingSystemDemo/Scripts/Advanced/ folder) to

HighlighterInteractionDemo.

5. The following scripts have been deprecated: HighlighterBase

HighlighterConstant HighlighterFlashing HighlighterInteractive

HighlighterOccluder HighlighterSpectrum . If you haven't used these demo

components in your project - simply remove them completely along with

HighlightingUpgrade script.

But if you do - you can automatically upgrade them to use Highlighter component

now. In order to upgrade prefabs - press Upgrade button when you see such

message, and save prefab:

In order to upgrade GameObject's in the currently opened scene - open

Tools/HighlightingSystem/Upgrade scene from v4.3 to v5.0 utility window, press

Upgrade Current Scene (all upgraded components will be logged to console) and save

it.

6. Upgrade your custom scripts to use new API if you see similar warnings in console:

Assets/HighlightingSystemDemo/Scripts/Basic/BooHighlighterController.boo(18,15
): BCW0012: WARNING:
'HighlightingSystem.Highlighter.FlashingOn(UnityEngine.Color,
UnityEngine.Color, single)' is obsolete.

Refer to the updated Highlighter , HighlightingBase and HighlightingRenderer

API.

7. Other important changes to take into account when upgrading:

seeThrough property of the Highlighter renamed to overlay .

ReinitMaterials() method of the Highlighter renamed to SetDirty() ;

Removed deprecated Highlighter API methods: SeeThrough(bool state) ,

SeeThroughOn() , SeeThroughOff() , SeeThroughSwitch() , OccluderOn() ,

OccluderOff() , OccluderSwitch()

Deprecated Die() method of the Highlighter . Use Destroy(highlighter);

instead.

In memory of my mother Nina and my friend Darwin.

Highlighting System are Copyright © 2018 Deep Dream Games. Unity, Unity Asset Store are

Copyright © 2018 Unity Technologies. Microsoft, Xbox, and Windows are either registered

trademarks or trademarks of Microsoft Corporation in the United States and/or other

countries. MacBook, iOS, Retina are trademarks of Apple Inc., registered in the U.S. and

other countries. NVIDIA, GeForce, GeForce GTX are trademarks and/or registered

trademarks of NVIDIA Corporation in the U.S. and/or other countries.

