[ { "type": "single", "question": "在高超声速飞行中,下列哪种现象通常不会显著出现?", "options": [ "真实气体效应", "熵层", "连续介质假设失效", "升力线理论仍然高度精确" ], "answer": "D", "explanation": "高超声速流动非线性效应强,基于小扰动和线性化的升力线理论不再适用。" }, { "type": "single", "question": "一架飞机在平飞中,其升力系数CL为0.5。若速度增加到原来的2倍,为维持平飞,升力系数应变为:", "options": [ "0.5", "0.25", "0.125", "1.0" ], "answer": "C", "explanation": "平飞时L = W = (1/2)ρV²SCL。因此L ∝ V²CL。要维持L不变,V变为2倍,V²变为4倍,则CL需变为原来的1/4,即0.5/4=0.125。" }, { "type": "single", "question": "涡轮风扇发动机的涵道比是指:", "options": [ "外涵道与内涵道直径之比", "外涵道与内涵道长度之比", "通过外涵道的空气流量与通过内涵道的空气流量之比", "风扇转速与压气机转速之比" ], "answer": "C", "explanation": "涵道比(Bypass Ratio)的准确定义是外涵空气流量与内涵空气流量之比。" }, { "type": "single", "question": "为了实现从近地圆轨道到地球同步轨道的最省能量转移,通常采用:", "options": [ "直接加速转移", "双椭圆转移", "霍曼转移", "借助月球引力的摆动转移" ], "answer": "C", "explanation": "对于两个共面的圆轨道,霍曼转移是能量最省的转移方式。" }, { "type": "single", "question": "关于飞机的纵向阻尼力矩,以下说法正确的是:", "options": [ "它由机翼单独产生", "它总是阻碍飞机的角运动", "它主要由水平尾翼产生,与俯仰角速度有关", "它与飞行速度无关" ], "answer": "C", "explanation": "当飞机有俯仰角速度时,水平尾翼感受到额外的来流速度,从而产生一个与角速度方向相反的力矩,即阻尼力矩。" }, { "type": "single", "question": "根据开普勒轨道要素,以下哪个参数决定了轨道的形状?", "options": [ "半长轴", "偏心率", "轨道倾角", "近地点幅角" ], "answer": "B", "explanation": "偏心率e决定了轨道是圆(e=0)、椭圆(01)。" }, { "type": "single", "question": "临界马赫数是指:", "options": [ "飞行器结构开始发生振动的马赫数", "翼型表面首次出现局部激波对应的飞行马赫数", "飞行器阻力开始显著增大的马赫数", "飞行器操纵效率开始下降的马赫数" ], "answer": "B", "explanation": "临界马赫数的定义是翼型表面某点气流速度首次达到当地声速(即出现局部激波)时对应的飞行马赫数。" }, { "type": "single", "question": "对于卫星的姿态控制,飞轮控制系统属于:", "options": [ "被动控制系统", "主动控制系统", "半被动控制系统", "开环控制系统" ], "answer": "B", "explanation": "飞轮通过改变其转速(角动量)来产生控制力矩,需要消耗电能并由控制系统主动控制,属于主动控制。" }, { "type": "single", "question": "在标准大气中,从对流层顶到约50公里高度的大气层称为:", "options": [ "对流层", "平流层", "中间层", "热层" ], "answer": "B", "explanation": "大气层结构由下至上为:对流层、平流层、中间层、热层。平流层范围大约从10-18公里至50公里。" }, { "type": "single", "question": "普朗特升力线理论的基本假设不包括:", "options": [ "大展弦比", "小迎角", "附着流", "翼型厚度不可忽略" ], "answer": "D", "explanation": "升力线理论将机翼简化为一条涡线,忽略了翼型的厚度和具体形状,用翼型的升力系数曲线来体现其二维特性。" }, { "type": "single", "question": "火箭发动机的比冲(Specific Impulse)是衡量其性能的重要参数,它的定义是:", "options": [ "单位质量推进剂产生的推力", "单位重量流量的推进剂产生的推力", "发动机的总冲量与推进剂质量的比值", "推力与燃烧室压力的比值" ], "answer": "B", "explanation": "比冲Isp = F / (ṁ * g₀),即推力除以海平面重力加速度下的推进剂重量流量。A选项漏了g₀,是错误的。" }, { "type": "single", "question": "关于激波,下列说法错误的是:", "options": [ "气流通过正激波后,速度会降低,压力、温度、密度升高", "斜激波强度弱于相同来流马赫数下的正激波", "气流通过激波的过程是等熵的", "激波是极强的压缩波" ], "answer": "C", "explanation": "激波内部是极其剧烈的非平衡过程,伴随着显著的熵增,是非等熵过程。" }, { "type": "single", "question": "卫星的轨道摄动主要来源于:", "options": [ "太阳光压", "地球非球形引力", "第三体引力(如日月引力)", "以上都是" ], "answer": "D", "explanation": "卫星的实际轨道会受到多种摄动力的影响而偏离二体问题的理想开普勒轨道,主要包括地球非球形引力、大气阻力、日月引力和太阳光压等。" }, { "type": "single", "question": "飞机在跨声速飞行时,随着马赫数增加,焦点位置会:", "options": [ "保持不变", "逐渐前移", "逐渐后移", "先前移再后移" ], "answer": "C", "explanation": "在跨声速区,由于机翼各部分先后达到临界马赫数,激波的出现和移动导致压力中心后移,使得全机焦点(气动中心)显著后移。" }, { "type": "single", "question": "对于可压流,音速a与气体常数R、温度T的关系是:", "options": [ "a = R/T", "a = √(RT)", "a = √(γRT)", "a = γRT" ], "answer": "C", "explanation": "音速公式为 a = √(γRT),其中γ为比热容。" }, { "type": "single", "question": "在航天器再入大气层过程中,\"弹道式再入\"的主要特点是:", "options": [ "升力较大,航程可控", "升阻比接近零,沿预定弹道下落", "采用跳跃式轨迹", "热流率始终保持在很低水平" ], "answer": "B", "explanation": "弹道式再入的航天器升阻比很低,几乎不产生升力,沿着一条基本确定的弹道返回,过程简单但过载和热流峰值较高。" }, { "type": "single", "question": "翼型的失速主要是由于:", "options": [ "飞行速度过低", "迎角过大导致气流分离", "飞行高度过高", "机翼结冰" ], "answer": "B", "explanation": "失速的根本原因是迎角超过临界值,导致翼型上表面边界层严重分离,升力急剧下降。速度、高度等是间接因素。" }, { "type": "single", "question": "衡量进气道性能的一个重要参数是总压恢复系数,它定义为:", "options": [ "进气道出口总压与进口静压之比", "进气道出口总压与来流总压之比", "进气道出口静压与来流静压之比", "进气道出口总压与进口总压之比" ], "answer": "B", "explanation": "总压恢复系数σ = P₂₀ / P₁₀,表示气流经过进气道后总压的保持程度,反映了进气道的损失大小。" }, { "type": "single", "question": "根据轨道力学,地球同步轨道卫星的轨道周期是:", "options": [ "12小时", "24小时", "1小时30分钟", "48小时" ], "answer": "B", "explanation": "地球同步轨道卫星的轨道周期与地球自转周期相同,为23小时56分04秒(一个恒星日),通常近似为24小时。" }, { "type": "single", "question": "在计算飞机升力时,引入“有限翼展修正”主要是为了考虑:", "options": [ "翼型厚度的影响", "空气压缩性的影响", "下洗和诱导阻力的影响", "雷诺数的影响" ], "answer": "C", "explanation": "有限翼展机翼会产生翼尖涡,导致下洗流,减小有效迎角,从而降低升力并产生诱导阻力。升力线理论等就是用来修正这种三维效应的。" } ]