#if !(PLATFORM_LUMIN && !UNITY_EDITOR) #if !UNITY_WSA_10_0 using System; using System.Collections; using System.Collections.Generic; using System.Linq; using System.Text; using UnityEngine; using UnityEngine.SceneManagement; using OpenCVForUnity.CoreModule; using OpenCVForUnity.DnnModule; using OpenCVForUnity.ImgprocModule; using OpenCVForUnity.ImgcodecsModule; using OpenCVForUnity.UnityUtils; using OpenCVForUnity.UnityUtils.Helper; using OpenCVRect = OpenCVForUnity.CoreModule.Rect; using OpenCVRange = OpenCVForUnity.CoreModule.Range; namespace OpenCVForUnityExample { /// /// YOLOv4 ObjectDetection Example /// An example of using OpenCV dnn module with YOLOv4 Object Detection. /// Referring to https://github.com/AlexeyAB/darknet. /// https://gist.github.com/YashasSamaga/48bdb167303e10f4d07b754888ddbdcf /// /// [Tested Models] /// yolov4-tiny https://github.com/AlexeyAB/darknet/releases/download/yolov4/yolov4-tiny.weights, https://raw.githubusercontent.com/AlexeyAB/darknet/0faed3e60e52f742bbef43b83f6be51dd30f373e/cfg/yolov4-tiny.cfg /// yolov4 https://github.com/AlexeyAB/darknet/releases/download/yolov4/yolov4.weights, https://raw.githubusercontent.com/AlexeyAB/darknet/0faed3e60e52f742bbef43b83f6be51dd30f373e/cfg/yolov4.cfg /// [RequireComponent(typeof(WebCamTextureToMatHelper))] public class YOLOv4ObjectDetectionExample : MonoBehaviour { [TooltipAttribute("Path to a binary file of model contains trained weights. It could be a file with extensions .caffemodel (Caffe), .pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet).")] public string model = "yolov4-tiny.weights"; [TooltipAttribute("Path to a text file of model contains network configuration. It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet).")] public string config = "yolov4-tiny.cfg"; [TooltipAttribute("Optional path to a text file with names of classes to label detected objects.")] public string classes = "coco.names"; [TooltipAttribute("Confidence threshold.")] public float confThreshold = 0.25f; [TooltipAttribute("Non-maximum suppression threshold.")] public float nmsThreshold = 0.45f; //[TooltipAttribute("Maximum detections per image.")] //public int topK = 1000; [TooltipAttribute("Preprocess input image by resizing to a specific width.")] public int inpWidth = 416; [TooltipAttribute("Preprocess input image by resizing to a specific height.")] public int inpHeight = 416; [Header("TEST")] [TooltipAttribute("Path to test input image.")] public string testInputImage; protected string classes_filepath; protected string config_filepath; protected string model_filepath; /// /// The texture. /// Texture2D texture; /// /// The webcam texture to mat helper. /// WebCamTextureToMatHelper webCamTextureToMatHelper; /// /// The bgr mat. /// Mat bgrMat; /// /// The YOLOv4 ObjectDetector. /// YOLOv4ObjectDetector objectDetector; /// /// The FPS monitor. /// FpsMonitor fpsMonitor; #if UNITY_WEBGL IEnumerator getFilePath_Coroutine; #endif // Use this for initialization void Start() { fpsMonitor = GetComponent(); webCamTextureToMatHelper = gameObject.GetComponent(); #if UNITY_WEBGL getFilePath_Coroutine = GetFilePath(); StartCoroutine(getFilePath_Coroutine); #else if (!string.IsNullOrEmpty(classes)) { classes_filepath = Utils.getFilePath("OpenCVForUnity/dnn/" + classes); if (string.IsNullOrEmpty(classes_filepath)) Debug.Log("The file:" + classes + " did not exist in the folder “Assets/StreamingAssets/OpenCVForUnity/dnn”."); } if (!string.IsNullOrEmpty(config)) { config_filepath = Utils.getFilePath("OpenCVForUnity/dnn/" + config); if (string.IsNullOrEmpty(config_filepath)) Debug.Log("The file:" + config + " did not exist in the folder “Assets/StreamingAssets/OpenCVForUnity/dnn”."); } if (!string.IsNullOrEmpty(model)) { model_filepath = Utils.getFilePath("OpenCVForUnity/dnn/" + model); if (string.IsNullOrEmpty(model_filepath)) Debug.Log("The file:" + model + " did not exist in the folder “Assets/StreamingAssets/OpenCVForUnity/dnn”."); } Run(); #endif } #if UNITY_WEBGL private IEnumerator GetFilePath() { if (!string.IsNullOrEmpty(classes)) { var getFilePathAsync_0_Coroutine = Utils.getFilePathAsync("OpenCVForUnity/dnn/" + classes, (result) => { classes_filepath = result; }); yield return getFilePathAsync_0_Coroutine; if (string.IsNullOrEmpty(classes_filepath)) Debug.Log("The file:" + classes + " did not exist in the folder “Assets/StreamingAssets/OpenCVForUnity/dnn”."); } if (!string.IsNullOrEmpty(config)) { var getFilePathAsync_1_Coroutine = Utils.getFilePathAsync("OpenCVForUnity/dnn/" + config, (result) => { config_filepath = result; }); yield return getFilePathAsync_1_Coroutine; if (string.IsNullOrEmpty(config_filepath)) Debug.Log("The file:" + config + " did not exist in the folder “Assets/StreamingAssets/OpenCVForUnity/dnn”."); } if (!string.IsNullOrEmpty(model)) { var getFilePathAsync_2_Coroutine = Utils.getFilePathAsync("OpenCVForUnity/dnn/" + model, (result) => { model_filepath = result; }); yield return getFilePathAsync_2_Coroutine; if (string.IsNullOrEmpty(model_filepath)) Debug.Log("The file:" + model + " did not exist in the folder “Assets/StreamingAssets/OpenCVForUnity/dnn”."); } getFilePath_Coroutine = null; Run(); } #endif // Use this for initialization void Run() { //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console. Utils.setDebugMode(true); if (string.IsNullOrEmpty(model_filepath) || string.IsNullOrEmpty(classes_filepath)) { Debug.LogError("model: " + model + " or " + "config: " + config + " or " + "classes: " + classes + " is not loaded."); } else { objectDetector = new YOLOv4ObjectDetector(model_filepath, config_filepath, classes_filepath, new Size(inpWidth, inpHeight), confThreshold, nmsThreshold/*, topK*/); } if (string.IsNullOrEmpty(testInputImage)) { #if UNITY_ANDROID && !UNITY_EDITOR // Avoids the front camera low light issue that occurs in only some Android devices (e.g. Google Pixel, Pixel2). webCamTextureToMatHelper.avoidAndroidFrontCameraLowLightIssue = true; #endif webCamTextureToMatHelper.Initialize(); } else { ///////////////////// // TEST var getFilePathAsync_0_Coroutine = Utils.getFilePathAsync("OpenCVForUnity/dnn/" + testInputImage, (result) => { string test_input_image_filepath = result; if (string.IsNullOrEmpty(test_input_image_filepath)) Debug.Log("The file:" + testInputImage + " did not exist in the folder “Assets/StreamingAssets/OpenCVForUnity/dnn”."); Mat img = Imgcodecs.imread(test_input_image_filepath); if (img.empty()) { img = new Mat(424, 640, CvType.CV_8UC3, new Scalar(0, 0, 0)); Imgproc.putText(img, testInputImage + " is not loaded.", new Point(5, img.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false); Imgproc.putText(img, "Please read console message.", new Point(5, img.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false); } else { TickMeter tm = new TickMeter(); tm.start(); Mat results = objectDetector.infer(img); tm.stop(); Debug.Log("YOLOv4ObjectDetector Inference time (preprocess + infer + postprocess), ms: " + tm.getTimeMilli()); objectDetector.visualize(img, results, true, false); } gameObject.transform.localScale = new Vector3(img.width(), img.height(), 1); float imageWidth = img.width(); float imageHeight = img.height(); float widthScale = (float)Screen.width / imageWidth; float heightScale = (float)Screen.height / imageHeight; if (widthScale < heightScale) { Camera.main.orthographicSize = (imageWidth * (float)Screen.height / (float)Screen.width) / 2; } else { Camera.main.orthographicSize = imageHeight / 2; } Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB); Texture2D texture = new Texture2D(img.cols(), img.rows(), TextureFormat.RGB24, false); Utils.matToTexture2D(img, texture); gameObject.GetComponent().material.mainTexture = texture; }); StartCoroutine(getFilePathAsync_0_Coroutine); ///////////////////// } } /// /// Raises the webcam texture to mat helper initialized event. /// public void OnWebCamTextureToMatHelperInitialized() { Debug.Log("OnWebCamTextureToMatHelperInitialized"); Mat webCamTextureMat = webCamTextureToMatHelper.GetMat(); texture = new Texture2D(webCamTextureMat.cols(), webCamTextureMat.rows(), TextureFormat.RGBA32, false); Utils.matToTexture2D(webCamTextureMat, texture); gameObject.GetComponent().material.mainTexture = texture; gameObject.transform.localScale = new Vector3(webCamTextureMat.cols(), webCamTextureMat.rows(), 1); Debug.Log("Screen.width " + Screen.width + " Screen.height " + Screen.height + " Screen.orientation " + Screen.orientation); if (fpsMonitor != null) { fpsMonitor.Add("width", webCamTextureMat.width().ToString()); fpsMonitor.Add("height", webCamTextureMat.height().ToString()); fpsMonitor.Add("orientation", Screen.orientation.ToString()); } float width = webCamTextureMat.width(); float height = webCamTextureMat.height(); float widthScale = (float)Screen.width / width; float heightScale = (float)Screen.height / height; if (widthScale < heightScale) { Camera.main.orthographicSize = (width * (float)Screen.height / (float)Screen.width) / 2; } else { Camera.main.orthographicSize = height / 2; } bgrMat = new Mat(webCamTextureMat.rows(), webCamTextureMat.cols(), CvType.CV_8UC3); } /// /// Raises the webcam texture to mat helper disposed event. /// public void OnWebCamTextureToMatHelperDisposed() { Debug.Log("OnWebCamTextureToMatHelperDisposed"); if (bgrMat != null) bgrMat.Dispose(); if (texture != null) { Texture2D.Destroy(texture); texture = null; } } /// /// Raises the webcam texture to mat helper error occurred event. /// /// Error code. public void OnWebCamTextureToMatHelperErrorOccurred(WebCamTextureToMatHelper.ErrorCode errorCode) { Debug.Log("OnWebCamTextureToMatHelperErrorOccurred " + errorCode); } // Update is called once per frame void Update() { if (webCamTextureToMatHelper.IsPlaying() && webCamTextureToMatHelper.DidUpdateThisFrame()) { Mat rgbaMat = webCamTextureToMatHelper.GetMat(); if (objectDetector == null) { Imgproc.putText(rgbaMat, "model file is not loaded.", new Point(5, rgbaMat.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false); Imgproc.putText(rgbaMat, "Please read console message.", new Point(5, rgbaMat.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false); } else { Imgproc.cvtColor(rgbaMat, bgrMat, Imgproc.COLOR_RGBA2BGR); //TickMeter tm = new TickMeter(); //tm.start(); Mat results = objectDetector.infer(bgrMat); //tm.stop(); //Debug.Log("YOLOv4ObjectDetector Inference time (preprocess + infer + postprocess), ms: " + tm.getTimeMilli()); Imgproc.cvtColor(bgrMat, rgbaMat, Imgproc.COLOR_BGR2RGBA); objectDetector.visualize(rgbaMat, results, false, true); } Utils.matToTexture2D(rgbaMat, texture); } } /// /// Raises the destroy event. /// void OnDestroy() { webCamTextureToMatHelper.Dispose(); if (objectDetector != null) objectDetector.dispose(); Utils.setDebugMode(false); #if UNITY_WEBGL if (getFilePath_Coroutine != null) { StopCoroutine(getFilePath_Coroutine); ((IDisposable)getFilePath_Coroutine).Dispose(); } #endif } /// /// Raises the back button click event. /// public void OnBackButtonClick() { SceneManager.LoadScene("OpenCVForUnityExample"); } /// /// Raises the play button click event. /// public void OnPlayButtonClick() { webCamTextureToMatHelper.Play(); } /// /// Raises the pause button click event. /// public void OnPauseButtonClick() { webCamTextureToMatHelper.Pause(); } /// /// Raises the stop button click event. /// public void OnStopButtonClick() { webCamTextureToMatHelper.Stop(); } /// /// Raises the change camera button click event. /// public void OnChangeCameraButtonClick() { webCamTextureToMatHelper.requestedIsFrontFacing = !webCamTextureToMatHelper.requestedIsFrontFacing; } private class YOLOv4ObjectDetector { Size input_size; float conf_threshold; float nms_threshold; int topK; int backend; int target; int num_classes = 80; DetectionModel detection_model; List classNames; List palette; Mat maxSizeImg; MatOfInt classIds; MatOfFloat confidences; MatOfRect boxes; public YOLOv4ObjectDetector(string modelFilepath, string configFilepath, string classesFilepath, Size inputSize, float confThreshold = 0.25f, float nmsThreshold = 0.45f, int topK = 1000, int backend = Dnn.DNN_BACKEND_OPENCV, int target = Dnn.DNN_TARGET_CPU) { // initialize if (!string.IsNullOrEmpty(modelFilepath)) { detection_model = new DetectionModel(modelFilepath, configFilepath); detection_model.setInputParams(1.0 / 255.0, inputSize, new Scalar(0, 0, 0), true, false); detection_model.setNmsAcrossClasses(false);// Perform classwise NMS. detection_model.setPreferableBackend(this.backend); detection_model.setPreferableTarget(this.target); } if (!string.IsNullOrEmpty(classesFilepath)) { classNames = readClassNames(classesFilepath); num_classes = classNames.Count; } input_size = new Size(inputSize.width > 0 ? inputSize.width : 640, inputSize.height > 0 ? inputSize.height : 640); conf_threshold = Mathf.Clamp01(confThreshold); nms_threshold = Mathf.Clamp01(nmsThreshold); this.topK = topK; this.backend = backend; this.target = target; classIds = new MatOfInt(); confidences = new MatOfFloat(); boxes = new MatOfRect(); palette = new List(); palette.Add(new Scalar(255, 56, 56, 255)); palette.Add(new Scalar(255, 157, 151, 255)); palette.Add(new Scalar(255, 112, 31, 255)); palette.Add(new Scalar(255, 178, 29, 255)); palette.Add(new Scalar(207, 210, 49, 255)); palette.Add(new Scalar(72, 249, 10, 255)); palette.Add(new Scalar(146, 204, 23, 255)); palette.Add(new Scalar(61, 219, 134, 255)); palette.Add(new Scalar(26, 147, 52, 255)); palette.Add(new Scalar(0, 212, 187, 255)); palette.Add(new Scalar(44, 153, 168, 255)); palette.Add(new Scalar(0, 194, 255, 255)); palette.Add(new Scalar(52, 69, 147, 255)); palette.Add(new Scalar(100, 115, 255, 255)); palette.Add(new Scalar(0, 24, 236, 255)); palette.Add(new Scalar(132, 56, 255, 255)); palette.Add(new Scalar(82, 0, 133, 255)); palette.Add(new Scalar(203, 56, 255, 255)); palette.Add(new Scalar(255, 149, 200, 255)); palette.Add(new Scalar(255, 55, 199, 255)); } protected virtual Mat preprocess(Mat image) { // Add padding to make it square. int max = Mathf.Max(image.cols(), image.rows()); if (maxSizeImg == null) maxSizeImg = new Mat(max, max, image.type()); if (maxSizeImg.width() != max || maxSizeImg.height() != max) maxSizeImg.create(max, max, image.type()); Imgproc.rectangle(maxSizeImg, new OpenCVRect(0, 0, maxSizeImg.width(), maxSizeImg.height()), Scalar.all(114), -1); Mat _maxSizeImg_roi = new Mat(maxSizeImg, new OpenCVRect((max - image.cols()) / 2, (max - image.rows()) / 2, image.cols(), image.rows())); image.copyTo(_maxSizeImg_roi); return maxSizeImg;// [max, max, 3] } public virtual Mat infer(Mat image) { // cheack if (image.channels() != 3) { Debug.Log("The input image must be in BGR format."); return new Mat(); } // Preprocess Mat input_blob = preprocess(image); // Forward detection_model.detect(input_blob, classIds, confidences, boxes, conf_threshold, nms_threshold); // Postprocess int num = classIds.rows(); Mat results = new Mat(num, 6, CvType.CV_32FC1); float maxSize = Mathf.Max((float)image.size().width, (float)image.size().height); float x_shift = (maxSize - (float)image.size().width) / 2f; float y_shift = (maxSize - (float)image.size().height) / 2f; for (int i = 0; i < num; ++i) { int[] classId_arr = new int[1]; classIds.get(i, 0, classId_arr); int id = classId_arr[0]; float[] confidence_arr = new float[1]; confidences.get(i, 0, confidence_arr); float confidence = confidence_arr[0]; int[] box_arr = new int[4]; boxes.get(i, 0, box_arr); int x = box_arr[0] - (int)x_shift; int y = box_arr[1] - (int)y_shift; int w = box_arr[2]; int h = box_arr[3]; results.put(i, 0, new float[] { x, y, x + w, y + h, confidence, id }); } return results; } protected virtual Mat postprocess(Mat output_blob, Size original_shape) { return output_blob; } public virtual void visualize(Mat image, Mat results, bool print_results = false, bool isRGB = false) { if (image.IsDisposed) return; if (results.empty() || results.cols() < 6) return; for (int i = results.rows() - 1; i >= 0; --i) { float[] box = new float[4]; results.get(i, 0, box); float[] conf = new float[1]; results.get(i, 4, conf); float[] cls = new float[1]; results.get(i, 5, cls); float left = box[0]; float top = box[1]; float right = box[2]; float bottom = box[3]; int classId = (int)cls[0]; Scalar c = palette[classId % palette.Count]; Scalar color = isRGB ? c : new Scalar(c.val[2], c.val[1], c.val[0], c.val[3]); Imgproc.rectangle(image, new Point(left, top), new Point(right, bottom), color, 2); string label = String.Format("{0:0.00}", conf[0]); if (classNames != null && classNames.Count != 0) { if (classId < (int)classNames.Count) { label = classNames[classId] + " " + label; } } int[] baseLine = new int[1]; Size labelSize = Imgproc.getTextSize(label, Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine); top = Mathf.Max((float)top, (float)labelSize.height); Imgproc.rectangle(image, new Point(left, top - labelSize.height), new Point(left + labelSize.width, top + baseLine[0]), color, Core.FILLED); Imgproc.putText(image, label, new Point(left, top), Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, Scalar.all(255), 1, Imgproc.LINE_AA); } // Print results if (print_results) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < results.rows(); ++i) { float[] box = new float[4]; results.get(i, 0, box); float[] conf = new float[1]; results.get(i, 4, conf); float[] cls = new float[1]; results.get(i, 5, cls); int classId = (int)cls[0]; string label = String.Format("{0:0}", cls[0]); if (classNames != null && classNames.Count != 0) { if (classId < (int)classNames.Count) { label = classNames[classId] + " " + label; } } sb.AppendLine(String.Format("-----------object {0}-----------", i + 1)); sb.AppendLine(String.Format("conf: {0:0.0000}", conf[0])); sb.AppendLine(String.Format("cls: {0:0}", label)); sb.AppendLine(String.Format("box: {0:0} {1:0} {2:0} {3:0}", box[0], box[1], box[2], box[3])); } Debug.Log(sb); } } public virtual void dispose() { if (detection_model != null) detection_model.Dispose(); if (maxSizeImg != null) maxSizeImg.Dispose(); maxSizeImg = null; if (classIds != null) classIds.Dispose(); if (confidences != null) confidences.Dispose(); if (boxes != null) boxes.Dispose(); classIds = null; confidences = null; boxes = null; } protected virtual List readClassNames(string filename) { List classNames = new List(); System.IO.StreamReader cReader = null; try { cReader = new System.IO.StreamReader(filename, System.Text.Encoding.Default); while (cReader.Peek() >= 0) { string name = cReader.ReadLine(); classNames.Add(name); } } catch (System.Exception ex) { Debug.LogError(ex.Message); return null; } finally { if (cReader != null) cReader.Close(); } return classNames; } } } } #endif #endif